A quantitative evaluation of the impact of vaccine roll-out rate and coverage on reducing deaths: insights from the first 2 years of COVID-19 epidemic in Iran.

Mahan Ghafari, Sepanta Hosseinpour, Mohammad Saeid Rezaee-Zavareh, Stefan Dascalu, Somayeh Rostamian, Kiarash Aramesh, Kaveh Madani, Shahram Kordasti
Author Information
  1. Mahan Ghafari: Big Data Institute and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK. mahan.ghafari@ndm.ox.ac.uk. ORCID
  2. Sepanta Hosseinpour: School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia.
  3. Mohammad Saeid Rezaee-Zavareh: Middle East Liver Diseases (MELD) Center, Tehran, Iran.
  4. Stefan Dascalu: Department of Biology, University of Oxford, Oxford, UK.
  5. Somayeh Rostamian: Department of Medicine, National Heart and Lung Institute, Imperial College London, London, UK. ORCID
  6. Kiarash Aramesh: The James F. Drane Bioethics Institute, PennWest University, Edinboro, PA, USA.
  7. Kaveh Madani: United Nations University Institute for Water, Environment and Health (UNU-INWEH), Hamilton, ON, Canada.
  8. Shahram Kordasti: Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK. shahram.kordasti@kcl.ac.uk. ORCID

Abstract

BACKGROUND: Vaccination has played a pivotal role in reducing the burden of COVID-19. Despite numerous studies highlighting its benefits in reducing the risk of severe disease and death, we still lack a quantitative understanding of how varying vaccination roll-out rates influence COVID-19 mortality.
METHODS: We developed a framework for estimating the number of avertable COVID-19 deaths (ACDs) by vaccination in Iran. To achieve this, we compared Iran's vaccination roll-out rates with those of eight model countries that predominantly used inactivated virus vaccines. We calculated net differences in the number of fully vaccinated individuals under counterfactual scenarios where Iran's per-capita roll-out rate was replaced with that of the model countries. This, in turn, enabled us to determine age specific ACDs for the Iranian population under counterfactual scenarios where number of COVID-19 deaths are estimated using all-cause mortality data. These estimates covered the period from the start of 2020 to 20 April 2022.
RESULTS: We found that while Iran would have had an approximately similar number of fully vaccinated individuals under counterfactual roll-out rates based on Bangladesh, Nepal, Sri Lanka, and Turkey (~ 65-70%), adopting Turkey's roll-out rates could have averted 50,000 (95% confidence interval: 38,100-53,500) additional deaths, while following Bangladesh's rates may have resulted in 52,800 (17,400-189,500) more fatalities in Iran. Surprisingly, mimicking Argentina's slower roll-out led to only 12,600 (10,400-13,300) fewer deaths, despite a higher counterfactual percentage of fully vaccinated individuals (~ 79%). Emulating Montenegro or Bolivia, with faster per capita roll-out rates and approximately 50% counterfactual full vaccination, could have prevented more deaths in older age groups, especially during the early waves. Finally, replicating Bahrain's model as an upper-bound benchmark, Iran could have averted 75,300 (56,000-83,000) deaths, primarily in the > 50 age groups.
CONCLUSIONS: Our analysis revealed that faster roll-outs were consistently associated with higher numbers of averted deaths, even in scenarios with lower overall coverage. This study offers valuable insights into future decision-making regarding infectious disease epidemic management through vaccination strategies. It accomplishes this by comparing various countries' relative performance in terms of timing, pace, and vaccination coverage, ultimately contributing to the prevention of COVID-19-related deaths.

Keywords

References

  1. Lancet Respir Med. 2021 Jul;9(7):694-695 [PMID: 33932347]
  2. Lancet Infect Dis. 2022 Mar;22(3):302-304 [PMID: 34562376]
  3. Clin Infect Dis. 2022 Oct 12;75(8):1442-1445 [PMID: 35412612]
  4. Nature. 2023 Jan;613(7942):130-137 [PMID: 36517599]
  5. BMJ. 2022 May 31;377:e069989 [PMID: 35640925]
  6. Lancet Infect Dis. 2022 Sep;22(9):1293-1302 [PMID: 35753318]
  7. Lancet Reg Health West Pac. 2022 Dec 02;29:100654 [PMID: 36471699]
  8. Hum Vaccin Immunother. 2022 Dec 31;18(1):1-3 [PMID: 33684019]
  9. Nature. 2022 Nov;611(7935):332-345 [PMID: 36329272]
  10. Nature. 2006 Jul 27;442(7101):448-52 [PMID: 16642006]
  11. Nat Commun. 2022 May 31;13(1):3015 [PMID: 35641529]
  12. Elife. 2021 Jun 30;10: [PMID: 34190045]
  13. PLoS Comput Biol. 2021 Sep 2;17(9):e1009288 [PMID: 34473693]
  14. Eur J Epidemiol. 2023 Apr 24;: [PMID: 37093505]
  15. Gastroenterol Hepatol Bed Bench. 2022 Spring;15(2):103-105 [PMID: 35845303]
  16. BMJ. 2022 Apr 27;377:e069317 [PMID: 35477670]
  17. BMC Med. 2023 Mar 8;21(1):85 [PMID: 36882868]
  18. BMJ. 2021 Jan 29;372:n281 [PMID: 33514535]
  19. JAMA. 2020 Jun 23;323(24):2462-2463 [PMID: 32379268]
  20. Lancet Infect Dis. 2021 May;21(5):602-603 [PMID: 33600759]
  21. Int J Immunopathol Pharmacol. 2021 Jan-Dec;35:20587384211065628 [PMID: 34911394]
  22. Lancet Reg Health Am. 2023 Jan;17:100397 [PMID: 36439909]
  23. BMJ Open. 2019 Sep 18;9(9):e028922 [PMID: 31537561]
  24. Philos Trans A Math Phys Eng Sci. 2023 Oct 9;381(2257):20230211 [PMID: 37611626]
  25. Nature. 2021 Feb;590(7844):140-145 [PMID: 33137809]
  26. Respirology. 2022 Apr;27(4):301-310 [PMID: 34820940]
  27. Int J Infect Dis. 2021 Jun;107:101-115 [PMID: 33862214]
  28. Public Health Rev. 2023 Jun 02;44:1605601 [PMID: 37332396]
  29. Rev Infect Dis. 1984 May-Jun;6 Suppl 2:S400-3 [PMID: 6740081]
  30. Lancet. 2021 Mar 13;397(10278):1023-1034 [PMID: 33587887]
  31. Euro Surveill. 2021 Nov;26(47): [PMID: 34823641]
  32. Health Policy. 2022 Apr;126(4):281-286 [PMID: 35101288]
  33. EClinicalMedicine. 2021 May;35:100865 [PMID: 33937735]
  34. Nature. 2020 Aug;584(7822):506-507 [PMID: 32839593]
  35. EClinicalMedicine. 2022 Aug 27;53:101624 [PMID: 36051247]
  36. Nat Commun. 2022 Jun 9;13(1):3215 [PMID: 35680857]
  37. JAMA Netw Open. 2022 Jan 4;5(1):e2142725 [PMID: 35015067]
  38. Lancet. 2022 Apr 16;399(10334):1469-1488 [PMID: 35219376]
  39. JAMA Netw Open. 2023 May 1;6(5):e2310302 [PMID: 37133864]
  40. Epidemics. 2021 Sep;36:100472 [PMID: 34153623]

MeSH Term

Female
Humans
Aged
COVID-19
Iran
Vaccines
Vaccination
Vaccination Coverage
Perinatal Death

Chemicals

Vaccines

Word Cloud

Created with Highcharts 10.0.0roll-outdeathsCOVID-19vaccinationratesIrancounterfactualnumberscenariosreducingmodelfullyvaccinatedindividualsageavertedcoverageVaccinationdiseasequantitativemortalityACDsIran'scountriesrateapproximately000500300higherfastergroupsinsightsepidemicBACKGROUND:playedpivotalroleburdenDespitenumerousstudieshighlightingbenefitsriskseveredeathstilllackunderstandingvaryinginfluenceMETHODS:developedframeworkestimatingavertableachievecomparedeightpredominantlyusedinactivatedvirusvaccinescalculatednetdifferencesper-capitareplacedturnenabledusdeterminespecificIranianpopulationestimated usingall-cause mortality dataestimatescoveredperiodstart202020April2022RESULTS:foundsimilarbasedBangladeshNepalSriLankaTurkey~ 65-70%adoptingTurkey's5095%confidenceinterval:38100-53additionalfollowingBangladesh'smayresulted5280017400-189fatalitiesSurprisinglymimickingArgentina'sslowerled1260010400-13fewerdespitepercentage~ 79%EmulatingMontenegroBoliviapercapita50%fullpreventedolderespeciallyearlywavesFinallyreplicatingBahrain'supper-boundbenchmark7556000-83primarilythe > 50CONCLUSIONS:analysisrevealedroll-outsconsistentlyassociatednumbersevenloweroverallstudyoffersvaluablefuturedecision-makingregardinginfectiousmanagementstrategiesaccomplishescomparingvariouscountries'relativeperformancetermstimingpaceultimatelycontributingpreventionCOVID-19-relatedevaluationimpactvaccinedeaths:first2 yearsCounterfactualDecision-makingExcess

Similar Articles

Cited By