Fault diagnosis of photovoltaic systems using artificial intelligence: A bibliometric approach.

Edgar Hernando Sepúlveda-Oviedo, Louise Travé-Massuyès, Audine Subias, Marko Pavlov, Corinne Alonso
Author Information
  1. Edgar Hernando Sepúlveda-Oviedo: LAAS-CNRS, Université Fédérale de Toulouse, CNRS, UPS, INSA, Toulouse, France.
  2. Louise Travé-Massuyès: LAAS-CNRS, Université Fédérale de Toulouse, CNRS, UPS, INSA, Toulouse, France.
  3. Audine Subias: LAAS-CNRS, Université Fédérale de Toulouse, CNRS, UPS, INSA, Toulouse, France.
  4. Marko Pavlov: Feedgy, Paris, France.
  5. Corinne Alonso: LAAS-CNRS, Université Fédérale de Toulouse, CNRS, UPS, INSA, Toulouse, France.

Abstract

Conventional fault detection methods in photovoltaic systems face limitations when dealing with emerging monitoring systems that produce vast amounts of high-dimensional data across various domains. Accordingly, great interest appears within the international scientific community for the application of artificial intelligence methods, which are seen as a highly promising solution for effectively managing large datasets for detecting faults. In this review, more than 620 papers published since 2010 on artificial intelligence methods for detecting faults in photovoltaic systems are analyzed. To extract major research trends, in particular to detect most promising algorithms and approaches overcoming excessive time calculations, a conventional bibliographic survey would have been extremely difficult to complete. That is why this study proposes to carry out a review with an innovative approach based on a statistical method named Bibliometric and a Expert qualitative content analysis. This methodology consists of three stages. First, a collection of data from databases is carried out with all precautions to achieve a large, robust, high-quality database. Second, multiple bibliometric indicators are chosen based on the objectives to be achieved and analyzed to assess their real impact, such as the quantity and nature of publications, collaborative connections among organizations, researchers, and countries or most cited articles. Finally, the Expert qualitative content analysis carried out by experts identifies the current and emerging research topics that have the greatest impact on fault detection in photovoltaic systems using artificial intelligence.

Keywords

References

  1. Sensors (Basel). 2022 Nov 04;22(21): [PMID: 36366213]
  2. Int J Occup Saf Ergon. 2020 Sep;26(3):469-488 [PMID: 29480063]
  3. PLoS One. 2017 Mar 22;12(3):e0172778 [PMID: 28328983]
  4. Comput Biol Med. 2021 Aug;135:104660 [PMID: 34346319]
  5. Front Public Health. 2021 Jun 22;9:666669 [PMID: 34239853]
  6. Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16569-72 [PMID: 16275915]
  7. Ann Transl Med. 2020 Jul;8(13):816 [PMID: 32793661]
  8. Syst Rev. 2021 Mar 29;10(1):89 [PMID: 33781348]
  9. J Contemp Dent Pract. 2014 Mar 01;15(2):258-62 [PMID: 25095854]
  10. Scientometrics. 2010 Aug;84(2):523-538 [PMID: 20585380]
  11. Front Pharmacol. 2019 May 24;10:564 [PMID: 31178733]
  12. Sensors (Basel). 2020 Aug 20;20(17): [PMID: 32825224]
  13. Front Public Health. 2022 Feb 03;9:742980 [PMID: 35186862]
  14. Radiologia (Engl Ed). 2021 May-Jun;63(3):228-235 [PMID: 33593607]
  15. Front Psychol. 2022 Jun 06;13:875940 [PMID: 35734456]
  16. Science. 1965 Jul 30;149(3683):510-5 [PMID: 14325149]
  17. PLoS One. 2015 Apr 02;10(4):e0122239 [PMID: 25837969]
  18. Entropy (Basel). 2020 Feb 11;22(2): [PMID: 33285980]
  19. Indian J Pharmacol. 2019 May-Jun;51(3):137-139 [PMID: 31391680]
  20. Educ Inf Technol (Dordr). 2022;27(1):1261-1286 [PMID: 34257512]
  21. Sci Total Environ. 2018 Sep 1;635:1081-1090 [PMID: 29710563]
  22. PLoS One. 2021 Dec 3;16(12):e0261091 [PMID: 34860855]
  23. J Biomed Inform. 2022 Apr;128:104047 [PMID: 35257868]
  24. Can Assoc Radiol J. 2017 Feb;68(1):10-15 [PMID: 27742484]
  25. J Adv Nurs. 2022 Mar;78(3):787-798 [PMID: 34514616]
  26. Front Oncol. 2022 Aug 02;12:973999 [PMID: 35982967]

Word Cloud

Created with Highcharts 10.0.0systemsphotovoltaicartificialintelligencemethodsfaultdetectionemergingdatapromisinglargedetectingfaultsreviewanalyzedresearchtrendsapproachbasedExpertqualitativecontentanalysiscarriedbibliometricimpactusingFaultdiagnosisConventionalfacelimitationsdealingmonitoringproducevastamountshigh-dimensionalacrossvariousdomainsAccordinglygreatinterestappearswithininternationalscientificcommunityapplicationseenhighlysolutioneffectivelymanagingdatasets620paperspublishedsince2010extractmajorparticulardetectalgorithmsapproachesovercomingexcessivetimecalculationsconventionalbibliographicsurveyextremelydifficultcompletestudyproposescarryinnovativestatisticalmethodnamedBibliometricmethodologyconsiststhreestagesFirstcollectiondatabasesprecautionsachieverobusthigh-qualitydatabaseSecondmultipleindicatorschosenobjectivesachievedassessrealquantitynaturepublicationscollaborativeconnectionsamongorganizationsresearcherscountriescitedarticlesFinallyexpertsidentifiescurrenttopicsgreatestintelligence:ArtificialMachinelearningPhotovoltaicPVRenewableenergyResearch

Similar Articles

Cited By