Enhancing the Accuracy of Lymph-Node-Metastasis Prediction in Gynecologic Malignancies Using Multimodal Federated Learning: Integrating CT, MRI, and PET/CT.

Zhijun Hu, Ling Ma, Yue Ding, Xuanxuan Zhao, Xiaohua Shi, Hongtao Lu, Kaijiang Liu
Author Information
  1. Zhijun Hu: Department of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China. ORCID
  2. Ling Ma: Library, Shanghai Jiao Tong University, Shanghai 200240, China.
  3. Yue Ding: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
  4. Xuanxuan Zhao: Department of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China.
  5. Xiaohua Shi: Library, Shanghai Jiao Tong University, Shanghai 200240, China. ORCID
  6. Hongtao Lu: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
  7. Kaijiang Liu: Department of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China.

Abstract

Gynecological malignancies, particularly lymph node metastasis, have presented a diagnostic challenge, even with traditional imaging techniques such as CT, MRI, and PET/CT. This study was conceived to explore and, subsequently, to bridge this diagnostic gap through a more holistic and innovative approach. By developing a comprehensive framework that integrates both non-image data and detailed MRI image analyses, this study harnessed the capabilities of a multimodal federated-learning model. Employing a composite neural network within a federated-learning environment, this study adeptly merged diverse data sources to enhance prediction accuracy. This was further complemented by a sophisticated deep convolutional neural network with an enhanced U-NET architecture for meticulous MRI image processing. Traditional imaging yielded sensitivities ranging from 32.63% to 57.69%. In contrast, the federated-learning model, without incorporating image data, achieved an impressive sensitivity of approximately 0.9231, which soared to 0.9412 with the integration of MRI data. Such advancements underscore the significant potential of this approach, suggesting that federated learning, especially when combined with MRI assessment data, can revolutionize lymph-node-metastasis detection in gynecological malignancies. This paves the way for more precise patient care, potentially transforming the current diagnostic paradigm and resulting in improved patient outcomes.

Keywords

References

  1. Proc Int Database Eng Appl Symp. 2021 Jul;2021:273-279 [PMID: 35392138]
  2. Comput Math Methods Med. 2022 Nov 26;2022:4364663 [PMID: 36471752]
  3. IEEE Trans Pattern Anal Mach Intell. 2020 Feb;42(2):386-397 [PMID: 29994331]
  4. Cancer Treat Rev. 2022 Jan;102:102311 [PMID: 34773774]
  5. Cancers (Basel). 2022 Feb 13;14(4): [PMID: 35205676]
  6. J Clin Med. 2023 Jun 13;12(12): [PMID: 37373717]
  7. Radiology. 1994 Mar;190(3):807-11 [PMID: 8115631]
  8. Cogn Neurodyn. 2023 Oct;17(5):1261-1269 [PMID: 37786661]
  9. Eur Radiol. 2009 Jun;19(6):1529-36 [PMID: 19184037]
  10. Front Oncol. 2023 Feb 16;13:1100087 [PMID: 36874136]
  11. Curr Opin Gastroenterol. 2023 Sep 1;39(5):436-447 [PMID: 37523001]
  12. IEEE J Biomed Health Inform. 2023 Oct;27(10):5004-5014 [PMID: 36399582]
  13. Ann Nucl Med. 2016 Feb;30(2):104-13 [PMID: 26546334]
  14. Am J Obstet Gynecol. 2019 Apr;220(4):381.e1-381.e14 [PMID: 30582927]
  15. Cancer Sci. 2010 Jun;101(6):1471-9 [PMID: 20298252]
  16. Gynecol Oncol. 2014 Jan;132(1):38-43 [PMID: 24120926]
  17. Gynecol Oncol. 2020 Nov;159(2):588-596 [PMID: 32921477]
  18. Med Dosim. 2013 Winter;38(4):454-9 [PMID: 24099965]
  19. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  20. Eur J Nucl Med Mol Imaging. 2018 Jan;45(1):67-76 [PMID: 28840302]
  21. Sensors (Basel). 2022 May 29;22(11): [PMID: 35684753]
  22. Radiology. 2010 Jan;254(1):31-46 [PMID: 20032141]
  23. J Obstet Gynaecol. 2023 Dec;43(1):2204162 [PMID: 37089113]
  24. J Cancer Res Ther. 2022 Oct-Dec;18(6):1548-1552 [PMID: 36412408]
  25. Gynecol Oncol. 2003 Oct;91(1):59-66 [PMID: 14529663]
  26. Radiother Oncol. 2018 Jun;127(3):404-416 [PMID: 29728273]
  27. BMC Cancer. 2023 Apr 13;23(1):341 [PMID: 37055741]
  28. Cortex. 2018 Aug;105:125-134 [PMID: 28801065]
  29. Curr Oncol Rep. 2019 Jul 29;21(9):77 [PMID: 31359169]
  30. J Cancer Res Clin Oncol. 2023 Aug;149(9):6075-6083 [PMID: 36653539]
  31. Eur Radiol. 2023 Jul;33(7):5118-5130 [PMID: 36725719]
  32. Cancer Med. 2023 Sep;12(17):17952-17966 [PMID: 37559500]

Grants

  1. 82371652/National Natural Science Foundation of China
  2. 20ZR1432700/Natural Science Foundation of Shanghai

Word Cloud

Created with Highcharts 10.0.0MRIdatamalignanciesdiagnosticstudyimagefederated-learningneuralnetworklymphnodemetastasisimagingCTPET/CTapproachmultimodalmodelconvolutional0federatedlearninggynecologicalpatientGynecologicalparticularlypresentedchallengeeventraditionaltechniquesconceivedexploresubsequentlybridgegapholisticinnovativedevelopingcomprehensiveframeworkintegratesnon-imagedetailedanalysesharnessedcapabilitiesEmployingcompositewithinenvironmentadeptlymergeddiversesourcesenhancepredictionaccuracycomplementedsophisticateddeepenhancedU-NETarchitecturemeticulousprocessingTraditionalyieldedsensitivitiesranging3263%5769%contrastwithoutincorporatingachievedimpressivesensitivityapproximately9231soared9412integrationadvancementsunderscoresignificantpotentialsuggestingespeciallycombinedassessmentcanrevolutionizelymph-node-metastasisdetectionpaveswayprecisecarepotentiallytransformingcurrentparadigmresultingimprovedoutcomesEnhancingAccuracyLymph-Node-MetastasisPredictionGynecologicMalignanciesUsingMultimodalFederatedLearning:Integratingmultilayerperceptron

Similar Articles

Cited By