Study on the Treatment of ITP Mice with IVIG Sourced from Distinct Sex-Special Plasma (DSP-IVIG).

Wei Zhang, Xin Yuan, Zongkui Wang, Jixuan Xu, Shengliang Ye, Peng Jiang, Xi Du, Fengjuan Liu, Fangzhao Lin, Rong Zhang, Li Ma, Changqing Li
Author Information
  1. Wei Zhang: Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China.
  2. Xin Yuan: Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China.
  3. Zongkui Wang: Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China. ORCID
  4. Jixuan Xu: Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China.
  5. Shengliang Ye: Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China. ORCID
  6. Peng Jiang: Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China.
  7. Xi Du: Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China.
  8. Fengjuan Liu: Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China.
  9. Fangzhao Lin: Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China.
  10. Rong Zhang: Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China. ORCID
  11. Li Ma: Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China.
  12. Changqing Li: Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China.

Abstract

Intravenous immunoglobulin (IVIG) is a first-line drug prepared from human plasma for the treatment of autoimmune diseases (AIDs), especially immune thrombocytopenia (ITP). Significant differences exist in protein types and expression levels between male and female plasma, and the prevalence of autoimmune diseases varies between sexes. The present study seeks to explore potential variations in IVIG sourced from distinct sex-specific plasma (DSP-IVIG), including IVIG sourced from female plasma (F-IVIG), IVIG sourced from male plasma (M-IVIG), and IVIG sourced from a blend of male and female plasma (Mix-IVIG). To address this question, we used an ITP mouse model and a monocyte-macrophage inflammation model treated with DSP IVIG. The analysis of proteomics in mice suggested that the pathogenesis and treatment of ITP may involve FcγRs mediated phagocytosis, apoptosis, Th17, cytokines, chemokines, and more. Key indicators, including the mouse spleen index, CD16 macrophages, M1, M2, IL-6, IL-27, and IL-13, all indicated that the efficacy in improving ITP was highest for M-IVIG. Subsequent cell experiments revealed that M-IVIG exhibited a more potent ability to inhibit monocyte phagocytosis. It induced more necrotic M2 cells and fewer viable M2, resulting in weaker M2 phagocytosis. M-IVIG also demonstrated superiority in the downregulation of surface makers CD36, CD68, and CD16 on M1 macrophages, a weaker capacity to activate complement, and a stronger binding ability to FcγRs on the THP-1 surface. In summary, DSP-IVIG effectively mitigated inflammation in ITP mice and monocytes and macrophages. However, M-IVIG exhibited advantages in improving the spleen index, regulating the number and typing of M1 and M2 macrophages, and inhibiting macrophage-mediated inflammation compared to F-IVIG and Mix-IVIG.

Keywords

References

  1. J Transl Med. 2018 Mar 2;16(1):48 [PMID: 29499727]
  2. Ann Clin Transl Neurol. 2016 May 25;3(7):495-511 [PMID: 27386499]
  3. Front Immunol. 2022 Sep 30;13:901872 [PMID: 36248801]
  4. J Thromb Haemost. 2017 Sep;15(9):1845-1858 [PMID: 28682499]
  5. Nat Rev Immunol. 2020 Oct;20(10):633-643 [PMID: 32782358]
  6. Blood Cells Mol Dis. 2016 Oct;61:26-36 [PMID: 27667163]
  7. Int J Biol Sci. 2015 Jan 05;11(2):220-9 [PMID: 25561904]
  8. Blood Adv. 2019 Nov 26;3(22):3780-3817 [PMID: 31770441]
  9. J Clin Invest. 1994 Nov;94(5):1729-35 [PMID: 7962520]
  10. Transfusion. 2009 Mar;49(3):440-52 [PMID: 18980623]
  11. Int J Mol Sci. 2020 Dec 24;22(1): [PMID: 33374151]
  12. Curr Protoc Immunol. 2016 Apr 01;113:15.30.1-15.30.13 [PMID: 27038460]
  13. Nat Rev Neurol. 2020 Nov;16(11):601-617 [PMID: 33005040]
  14. Front Endocrinol (Lausanne). 2019 Apr 29;10:265 [PMID: 31110493]
  15. Int J Mol Sci. 2019 Feb 28;20(5): [PMID: 30823385]
  16. Haematologica. 2020 Feb 27;106(1):250-254 [PMID: 32107327]
  17. Immunotherapy. 2014;6(7):853-69 [PMID: 25290417]
  18. Immunity. 2001 Jun;14(6):693-704 [PMID: 11420040]
  19. Transfusion. 2014 Nov;54(11):2871-9 [PMID: 24826802]
  20. CMAJ. 2015 Mar 3;187(4):257-264 [PMID: 25667260]
  21. Blood. 2012 May 31;119(22):5261-4 [PMID: 22508937]
  22. Planta Med. 2018 Feb;84(3):168-175 [PMID: 28938496]
  23. J Clin Med. 2017 Feb 09;6(2): [PMID: 28208757]
  24. J Cell Biochem. 2019 Jul;120(7):11274-11283 [PMID: 30775797]
  25. J Inflamm Res. 2022 Oct 20;15:5905-5915 [PMID: 36274827]
  26. J Cell Biol. 1994 Jun;125(6):1407-16 [PMID: 7515890]
  27. Eur J Ophthalmol. 2020 Sep;30(5):1008-1013 [PMID: 31025590]
  28. J Autoimmun. 2017 Feb;77:89-95 [PMID: 27863820]
  29. Exp Hematol Oncol. 2021 Mar 15;10(1):21 [PMID: 33722280]
  30. Cureus. 2019 Oct 6;11(10):e5849 [PMID: 31754584]
  31. Front Immunol. 2015 Aug 28;6:431 [PMID: 26379667]
  32. Eur J Haematol. 2003 Oct;71(4):283-8 [PMID: 12950238]
  33. J Clin Immunol. 2014 Jul;34 Suppl 1:S132-8 [PMID: 24722853]
  34. Crit Care Nurs Clin North Am. 2012 Sep;24(3):403-18 [PMID: 22920465]
  35. Fundam Clin Pharmacol. 2011 Dec;25(6):753-61 [PMID: 21219439]
  36. Transfusion. 2012 Feb;52(2):417-24 [PMID: 21880043]
  37. Hamostaseologie. 2019 Aug;39(3):259-265 [PMID: 31170773]
  38. Oncol Res Treat. 2018;41 Suppl 5:1-30 [PMID: 30235458]
  39. Clin Diagn Lab Immunol. 2004 Nov;11(6):1158-64 [PMID: 15539522]
  40. J Clin Immunol. 2014 Jul;34 Suppl 1:S120-6 [PMID: 24722854]
  41. Biomed Chromatogr. 2019 Apr;33(4):e4452 [PMID: 30513136]
  42. Muscle Nerve. 2019 Jul;60(1):14-24 [PMID: 30767274]
  43. Nat Rev Neurol. 2015 Feb;11(2):80-9 [PMID: 25561275]
  44. Int J Clin Exp Pathol. 2018 May 01;11(5):2419-2429 [PMID: 31938354]
  45. Med Sci Monit. 2021 Aug 27;27:e931471 [PMID: 34446688]
  46. Blood. 2009 Mar 12;113(11):2386-93 [PMID: 19005182]
  47. Front Immunol. 2022 Mar 15;13:841710 [PMID: 35370997]
  48. Wound Repair Regen. 2016 Jul;24(4):613-29 [PMID: 27196106]
  49. Immunotherapy. 2019 Nov;11(16):1423-1433 [PMID: 31596642]
  50. Ann N Y Acad Sci. 2007 Sep;1110:507-15 [PMID: 17911466]
  51. Immunol Lett. 2014 Aug;160(2):139-44 [PMID: 24495619]
  52. J Exp Med. 2015 Aug 24;212(9):1361-9 [PMID: 26282878]
  53. J Cell Physiol. 2018 Sep;233(9):6425-6440 [PMID: 29319160]
  54. J Cell Biol. 1997 Dec 1;139(5):1209-17 [PMID: 9382867]
  55. Eur J Immunol. 2014 May;44(5):1444-53 [PMID: 24505033]
  56. Anal Chem. 2023 Jul 25;95(29):11007-11018 [PMID: 37389440]
  57. Int Immunopharmacol. 2021 Jun;95:107502 [PMID: 33690000]
  58. Hematology. 2017 Sep;22(8):493-500 [PMID: 28300523]
  59. JAMA. 2004 May 19;291(19):2367-75 [PMID: 15150209]
  60. Transfusion. 2012 Dec;52(12):2570-6 [PMID: 22536827]
  61. Vox Sang. 2009 Nov;97(4):348-54 [PMID: 19656348]
  62. Clin Exp Immunol. 2017 May;188(2):275-282 [PMID: 28142207]
  63. Biomater Sci. 2019 Nov 1;7(11):4568-4577 [PMID: 31414106]
  64. Immunol Rev. 2015 Nov;268(1):88-103 [PMID: 26497515]
  65. Front Immunol. 2022 Nov 03;13:1006939 [PMID: 36405742]
  66. Front Neuroendocrinol. 2014 Aug;35(3):347-69 [PMID: 24793874]
  67. Bioengineered. 2022 May;13(5):13587-13595 [PMID: 35796625]
  68. Ann Hematol. 2020 Oct;99(10):2315-2322 [PMID: 32728937]

Grants

  1. 2023NSFSC0714, 2023ZHCG0066 and 2022YFS0010/Department of Science and Technology of Sichuan Province
  2. CIFMS, 2021-I2M-1-042/CAMS Innovation Fund for Medical Sciences
  3. Q22009/Scientific Research Project of Sichuan Medical Association

MeSH Term

Male
Female
Humans
Animals
Mice
Immunoglobulins, Intravenous
Purpura, Thrombocytopenic, Idiopathic
Thrombocytopenia
Cytokines
Inflammation

Chemicals

Immunoglobulins, Intravenous
Cytokines

Word Cloud

Created with Highcharts 10.0.0IVIGplasmaITPsourcedM-IVIGmacrophagesM2DSP-IVIGmalefemaleinflammationphagocytosisM1immunoglobulintreatmentautoimmunediseasesimmunethrombocytopeniadistinctsex-specificincludingF-IVIGMix-IVIGmousemodelproteomicsmiceFcγRsspleenindexCD16improvingexhibitedabilityweakersurfaceIntravenousfirst-linedrugpreparedhumanAIDsespeciallySignificantdifferencesexistproteintypesexpressionlevelsprevalencevariessexespresentstudyseeksexplorepotentialvariationsblendaddressquestionusedmonocyte-macrophagetreatedDSPanalysissuggestedpathogenesismayinvolvemediatedapoptosisTh17cytokineschemokinesKeyindicatorsIL-6IL-27IL-13indicatedefficacyhighestSubsequentcellexperimentsrevealedpotentinhibitmonocyteinducednecroticcellsfewerviableresultingalsodemonstratedsuperioritydownregulationmakersCD36CD68capacityactivatecomplementstrongerbindingTHP-1summaryeffectivelymitigatedmonocytesHoweveradvantagesregulatingnumbertypinginhibitingmacrophage-mediatedcomparedStudyTreatmentMiceSourcedDistinctSex-SpecialPlasmaintravenous

Similar Articles

Cited By