Design and Analysis of an Upper Limb Rehabilitation Robot Based on Multimodal Control.

Hang Ren, Tongyou Liu, Jinwu Wang
Author Information
  1. Hang Ren: School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200000, China. ORCID
  2. Tongyou Liu: School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 201100, China.
  3. Jinwu Wang: School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200000, China.

Abstract

To address the rehabilitation needs of upper limb hemiplegic patients in various stages of recovery, streamline the workload of rehabilitation professionals, and provide data visualization, our research team designed a six-degree-of-freedom upper limb exoskeleton rehabilitation robot inspired by the human upper limb's structure. We also developed an eight-channel synchronized signal acquisition system for capturing surface electromyography (sEMG) signals and elbow joint angle data. Utilizing Solidworks, we modeled the robot with a focus on modularity, and conducted structural and kinematic analyses. To predict the elbow joint angles, we employed a back propagation neural network (BPNN). We introduced three training modes: a PID control, bilateral control, and active control, each tailored to different phases of the rehabilitation process. Our experimental results demonstrated a strong linear regression relationship between the predicted reference values and the actual elbow joint angles, with an R-squared value of 94.41% and an average error of four degrees. Furthermore, these results validated the increased stability of our model and addressed issues related to the size and single-mode limitations of upper limb rehabilitation robots. This work lays the theoretical foundation for future model enhancements and further research in the field of rehabilitation.

Keywords

References

  1. IEEE J Biomed Health Inform. 2019 Sep;23(5):2002-2008 [PMID: 30387754]
  2. Life (Basel). 2021 Nov 24;11(12): [PMID: 34947820]
  3. Sensors (Basel). 2022 Nov 11;22(22): [PMID: 36433330]
  4. J Clin Med. 2023 Apr 18;12(8): [PMID: 37109287]
  5. IEEE Trans Neural Syst Rehabil Eng. 2020 Apr;28(4):978-987 [PMID: 32167899]
  6. Micromachines (Basel). 2023 Feb 27;14(3): [PMID: 36984962]
  7. Sensors (Basel). 2012 Nov 22;12(12):16046-59 [PMID: 23443366]
  8. Sensors (Basel). 2020 Sep 02;20(17): [PMID: 32887326]
  9. J Neuroeng Rehabil. 2023 Mar 19;20(1):34 [PMID: 36935514]
  10. J Biomech. 2010 Jan 19;43(2):203-9 [PMID: 19878952]
  11. J Neuroeng Rehabil. 2019 May 9;16(1):55 [PMID: 31072370]
  12. Front Robot AI. 2020 Nov 27;7:586216 [PMID: 33501343]
  13. Micromachines (Basel). 2021 Jul 24;12(8): [PMID: 34442492]
  14. Neurorehabil Neural Repair. 2015 May;29(4):349-61 [PMID: 25160567]
  15. Front Robot AI. 2021 Dec 07;8:745018 [PMID: 34950707]
  16. J Shoulder Elbow Surg. 2012 Sep;21(9):1177-83 [PMID: 22047785]
  17. Circulation. 2019 Mar 5;139(10):e56-e528 [PMID: 30700139]
  18. Sensors (Basel). 2021 Dec 15;21(24): [PMID: 34960457]
  19. Neurol Sci. 2021 Dec;42(12):5219-5229 [PMID: 33826010]
  20. Sci Rep. 2020 Feb 4;10(1):1806 [PMID: 32019981]
  21. IEEE Trans Neural Syst Rehabil Eng. 2019 Nov;27(11):2294-2304 [PMID: 31567097]
  22. Sci Transl Med. 2023 Feb;15(681):eadd1504 [PMID: 36724237]
  23. IEEE Trans Neural Syst Rehabil Eng. 2020 Oct;28(10):2214-2223 [PMID: 32822300]

MeSH Term

Humans
Robotics
Upper Extremity
Exoskeleton Device
Elbow Joint
Electromyography

Word Cloud

Created with Highcharts 10.0.0rehabilitationupperlimbjointrobotelbowcontroldataresearchsEMGangleanglesresultsmodeladdressneedshemiplegicpatientsvariousstagesrecoverystreamlineworkloadprofessionalsprovidevisualizationteamdesignedsix-degree-of-freedomexoskeletoninspiredhumanlimb'sstructurealsodevelopedeight-channelsynchronizedsignalacquisitionsystemcapturingsurfaceelectromyographysignalsUtilizingSolidworksmodeledfocusmodularityconductedstructuralkinematicanalysespredictemployedbackpropagationneuralnetworkBPNNintroducedthreetrainingmodes:PIDbilateralactivetailoreddifferentphasesprocessexperimentaldemonstratedstronglinearregressionrelationshippredictedreferencevaluesactualR-squaredvalue9441%averageerrorfourdegreesFurthermorevalidatedincreasedstabilityaddressedissuesrelatedsizesingle-modelimitationsrobotsworklaystheoreticalfoundationfutureenhancementsfieldDesignAnalysisUpperLimbRehabilitationRobotBasedMultimodalControlkinematicsanalysis

Similar Articles

Cited By

No available data.