Learning skillful medium-range global weather forecasting.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Ferran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, Alexander Merose, Stephan Hoyer, George Holland, Oriol Vinyals, Jacklynn Stott, Alexander Pritzel, Shakir Mohamed, Peter Battaglia
Author Information
  1. Remi Lam: Google DeepMind, London, UK. ORCID
  2. Alvaro Sanchez-Gonzalez: Google DeepMind, London, UK. ORCID
  3. Matthew Willson: Google DeepMind, London, UK. ORCID
  4. Peter Wirnsberger: Google DeepMind, London, UK. ORCID
  5. Meire Fortunato: Google DeepMind, London, UK. ORCID
  6. Ferran Alet: Google DeepMind, London, UK. ORCID
  7. Suman Ravuri: Google DeepMind, London, UK. ORCID
  8. Timo Ewalds: Google DeepMind, London, UK. ORCID
  9. Zach Eaton-Rosen: Google DeepMind, London, UK. ORCID
  10. Weihua Hu: Google DeepMind, London, UK. ORCID
  11. Alexander Merose: Google Research, Mountain View, CA, USA. ORCID
  12. Stephan Hoyer: Google Research, Mountain View, CA, USA. ORCID
  13. George Holland: Google DeepMind, London, UK.
  14. Oriol Vinyals: Google DeepMind, London, UK. ORCID
  15. Jacklynn Stott: Google DeepMind, London, UK. ORCID
  16. Alexander Pritzel: Google DeepMind, London, UK.
  17. Shakir Mohamed: Google DeepMind, London, UK. ORCID
  18. Peter Battaglia: Google DeepMind, London, UK. ORCID

Abstract

Global medium-range weather forecasting is critical to decision-making across many social and economic domains. Traditional numerical weather prediction uses increased compute resources to improve forecast accuracy, but does not directly use historical weather data to improve the underlying model. Here, we introduce "GraphCast," a machine learning-based method trained directly from reanalysis data. It predicts hundreds of weather variables, over 10 days at 0.25° resolution globally, in under one minute. GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets, and its forecasts support better severe event prediction, including tropical cyclones tracking, atmospheric rivers, and extreme temperatures. GraphCast is a key advance in accurate and efficient weather forecasting, and helps realize the promise of machine learning for modeling complex dynamical systems.

Word Cloud

Created with Highcharts 10.0.0weatherforecastingmedium-rangepredictionimprovedirectlydatamachineGraphCastaccuratesystemsGlobalcriticaldecision-makingacrossmanysocialeconomicdomainsTraditionalnumericalusesincreasedcomputeresourcesforecastaccuracyusehistoricalunderlyingmodelintroduce"GraphCast"learning-basedmethodtrainedreanalysispredictshundredsvariables10days025°resolutiongloballyoneminutesignificantlyoutperformsoperationaldeterministic90%1380verificationtargetsforecastssupportbettersevereeventincludingtropicalcyclonestrackingatmosphericriversextremetemperatureskeyadvanceefficienthelpsrealizepromiselearningmodelingcomplexdynamicalLearningskillfulglobal

Similar Articles

Cited By (41)