Convergence of gut microbiota in myrmecophagous amphibians.

Andrés E Brunetti, Mariana L Lyra, Juliane P C Monteiro, Juan P Zurano, Diego Baldo, Celio F B Haddad, Andrew H Moeller
Author Information
  1. Andrés E Brunetti: Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (IBS, UNaM-CONICET), Posadas, Misiones 3300, Argentina. ORCID
  2. Mariana L Lyra: New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates. ORCID
  3. Juliane P C Monteiro: Departamento de Biodiversidade e Centro de Aquicultura da UNESP (CAUNESP), Instituto de Biociências, UNESP-Universidade Estadual Paulista, Rio Claro, SP 13506-900, Brazil. ORCID
  4. Juan P Zurano: Instituto de Biología Subtropical (IBS, UNaM-CONICET), Puerto Iguazú, Misiones 3370, Argentina. ORCID
  5. Diego Baldo: Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (IBS, UNaM-CONICET), Posadas, Misiones 3300, Argentina. ORCID
  6. Celio F B Haddad: Departamento de Biodiversidade e Centro de Aquicultura da UNESP (CAUNESP), Instituto de Biociências, UNESP-Universidade Estadual Paulista, Rio Claro, SP 13506-900, Brazil.
  7. Andrew H Moeller: Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA.

Abstract

The gut microbiome composition of terrestrial vertebrates is known to converge in response to common specialized dietary strategies, like leaf-eating (folivory) or ant- and termite-eating (myrmecophagy). To date, such convergence has been studied in mammals and birds, but has been neglected in amphibians. Here, we analysed 15 anuran species (frogs and toads) representing five Neotropical families and demonstrated the compositional convergence of the gut microbiomes of distantly related myrmecophagous species. Specifically, we found that the gut microbial communities of bufonids and microhylids, which have independently evolved myrmecophagy, were significantly more similar than expected based on their hosts' evolutionary divergence. Conversely, we found that gut microbiome composition was significantly associated with host evolutionary history in some cases. For instance, the microbiome composition of , one of the few known amphibians that eat fruits, was not different from those of closely related tree frogs with an arthropod generalist diet. Bacterial taxa overrepresented in myrmecophagous species relative to other host families include , , and Rikenellaceae, suggesting diet-mediated selection and prey-to-predator transmission likely driving the observed compositional convergence. This study provides a basis for examining the roles of the gut microbiome in host tolerance and sequestration of toxic alkaloids from ants and termites.

Keywords

References

  1. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  2. Environ Microbiol Rep. 2013 Dec;5(6):899-903 [PMID: 24249298]
  3. Nat Commun. 2014 Nov 25;5:5498 [PMID: 25423494]
  4. Biol Lett. 2019 Jun 28;15(6):20190028 [PMID: 31185820]
  5. Trends Microbiol. 2022 Mar;30(3):268-280 [PMID: 34393028]
  6. Nat Commun. 2015 Sep 22;6:8285 [PMID: 26393325]
  7. Microbiome. 2021 Jul 31;9(1):166 [PMID: 34332628]
  8. FEMS Microbiol Rev. 2013 Sep;37(5):699-735 [PMID: 23692388]
  9. Annu Rev Physiol. 2011;73:69-93 [PMID: 21314432]
  10. Sci Rep. 2022 Jan 13;12(1):713 [PMID: 35027664]
  11. FEMS Microbiol Lett. 2019 Nov 1;366(21): [PMID: 31778183]
  12. Trends Biotechnol. 2015 Sep;33(9):496-503 [PMID: 26210164]
  13. Ecol Evol. 2022 Apr 21;12(4):e8854 [PMID: 35475186]
  14. Nat Commun. 2019 May 16;10(1):2200 [PMID: 31097702]
  15. Proc Natl Acad Sci U S A. 2017 Dec 26;114(52):13768-13773 [PMID: 29229828]
  16. Proc Biol Sci. 2020 Sep 9;287(1934):20200820 [PMID: 32873208]
  17. Science. 2008 Jun 20;320(5883):1647-51 [PMID: 18497261]
  18. Natl Sci Rev. 2022 Aug 24;10(4):nwac174 [PMID: 37124465]
  19. Oecologia. 1980 Apr;45(1):131-141 [PMID: 28310947]
  20. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  21. Bioinformatics. 2010 Jun 1;26(11):1463-4 [PMID: 20395285]
  22. BMC Microbiol. 2019 Jul 17;19(1):164 [PMID: 31315576]
  23. Proc Biol Sci. 2023 Nov 29;290(2011):20232223 [PMID: 37964521]
  24. mSystems. 2020 Jul 28;5(4): [PMID: 32723798]
  25. Science. 2011 May 20;332(6032):970-4 [PMID: 21596990]
  26. Mol Biol Evol. 2022 Aug 06;: [PMID: 35932227]
  27. Front Microbiol. 2014 May 16;5:223 [PMID: 24904538]
  28. Mol Ecol. 2014 Mar;23(6):1301-1317 [PMID: 24118574]
  29. Philos Trans R Soc Lond B Biol Sci. 2020 Sep 28;375(1808):20190597 [PMID: 32772670]
  30. mBio. 2020 Jan 7;11(1): [PMID: 31911491]
  31. Sci Rep. 2020 Jun 23;10(1):10172 [PMID: 32576863]
  32. Proc Natl Acad Sci U S A. 2021 Nov 23;118(47): [PMID: 34799446]
  33. Nat Commun. 2016 Dec 15;7:13699 [PMID: 27976718]
  34. PLoS One. 2015 Oct 07;10(10):e0140014 [PMID: 26444989]
  35. Nat Commun. 2017 Feb 23;8:14319 [PMID: 28230052]
  36. mBio. 2018 Jul 31;9(4): [PMID: 30065092]
  37. Anim Microbiome. 2021 Nov 4;3(1):77 [PMID: 34736528]
  38. Sci Rep. 2021 Oct 14;11(1):20493 [PMID: 34650115]
  39. Nat Ecol Evol. 2018 May;2(5):850-858 [PMID: 29581588]
  40. Animals (Basel). 2021 May 13;11(5): [PMID: 34068415]
  41. Appl Environ Microbiol. 2014 Apr;80(7):2261-9 [PMID: 24487532]
  42. Mol Ecol. 2015 Oct;24(20):5284-95 [PMID: 26348261]
  43. Food Funct. 2021 Jul 21;12(14):6309-6322 [PMID: 34085683]
  44. Annu Rev Entomol. 2022 Jan 7;67:367-385 [PMID: 34678043]
  45. Naturwissenschaften. 2016 Apr;103(3-4):25 [PMID: 26924012]
  46. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  47. Ecol Lett. 2014 Oct;17(10):1238-46 [PMID: 25040855]
  48. Nat Biotechnol. 2019 Aug;37(8):852-857 [PMID: 31341288]
  49. BMC Microbiol. 2016 Mar 10;16:33 [PMID: 26966006]

Grants

  1. R35 GM138284/NIGMS NIH HHS

MeSH Term

Humans
Animals
Gastrointestinal Microbiome
Biological Evolution
Microbiota
Mammals
Anura
RNA, Ribosomal, 16S

Chemicals

RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0gutmicrobiomecompositionconvergenceamphibiansspeciesmyrmecophagoushostknownmyrmecophagyfrogsfamiliescompositionalrelatedfoundmicrobialsignificantlyevolutionarydiettransmissionterrestrialvertebratesconvergeresponsecommonspecializeddietarystrategieslikeleaf-eatingfolivoryant-termite-eatingdatestudiedmammalsbirdsneglectedanalysed15anurantoadsrepresentingfiveNeotropicaldemonstratedmicrobiomesdistantlySpecificallycommunitiesbufonidsmicrohylidsindependentlyevolvedsimilarexpectedbasedhosts'divergenceConverselyassociatedhistorycasesinstanceoneeatfruitsdifferentcloselytreearthropodgeneralistBacterialtaxaoverrepresentedrelativeincludeRikenellaceaesuggestingdiet-mediatedselectionprey-to-predatorlikelydrivingobservedstudyprovidesbasisexaminingrolestolerancesequestrationtoxicalkaloidsantstermitesConvergencemicrobiotaanuransbacterialcoevolutionecology

Similar Articles

Cited By