Genetic signatures of lineage fusion closely resemble population decline.

Ryan C Garrick
Author Information
  1. Ryan C Garrick: Department of Biology University of Mississippi Oxford Mississippi USA. ORCID

Abstract

Accurate interpretation of the genetic signatures of past demographic events is crucial for reconstructing evolutionary history. Lineage fusion (complete merging, resulting in a single panmictic population) is a special case of secondary contact that is seldom considered. Here, the circumstances under which lineage fusion can be distinguished from population size constancy, growth, bottleneck, and decline were investigated. Multi-locus haplotype data were simulated under models of lineage fusion with different divergence versus sampling lag times (D:L ratios). These pseudo-observed datasets also differed in their allocation of a fixed amount of sequencing resources (number of sampled alleles, haplotype length, number of loci). Distinguishability of lineage fusion versus each of 10 untrue non-fusion scenarios was quantified based on six summary statistics (neutrality tests). Some datasets were also analyzed using extended Bayesian skyline plots. Results showed that signatures of lineage fusion very closely resemble those of decline-high distinguishability was generally limited to the most favorable scenario (D:L���=���9), using the most sensitive summary statistics ( and ), coupled with the optimal sequencing resource allocation (maximizing number of loci). Also, extended Bayesian skyline plots often erroneously inferred population decline. Awareness of the potential for lineage fusion to carry the hallmarks of population decline is critical.

Keywords

Associated Data

Dryad | 10.5061/dryad.1jwstqk11(active

References

  1. Mol Biol Evol. 2017 Dec 1;34(12):3299-3302 [PMID: 29029172]
  2. Genetics. 1997 Oct;147(2):915-25 [PMID: 9335623]
  3. Syst Biol. 2018 Sep 1;67(5):901-904 [PMID: 29718447]
  4. Mol Ecol. 2001 Mar;10(3):691-701 [PMID: 11298980]
  5. BMC Evol Biol. 2008 Oct 23;8:289 [PMID: 18947398]
  6. G3 (Bethesda). 2015 Nov 06;6(1):107-20 [PMID: 26546308]
  7. Ecol Evol. 2023 Nov 12;13(11):e10725 [PMID: 37964788]
  8. Genetics. 2008 May;179(1):555-67 [PMID: 18493071]
  9. PLoS Comput Biol. 2014 Apr 10;10(4):e1003537 [PMID: 24722319]
  10. Evolution. 2014 Apr;68(4):923-34 [PMID: 24329123]
  11. Mol Ecol. 2010 Jul;19(13):2609-25 [PMID: 20561199]
  12. Mol Ecol. 2009 Mar;18(6):1034-47 [PMID: 19207258]
  13. Genetics. 1993 Mar;133(3):693-709 [PMID: 8454210]
  14. Mol Ecol. 2019 Sep;28(17):3857-3868 [PMID: 31233646]
  15. Ecol Evol. 2019 Apr 01;9(8):4621-4636 [PMID: 31031931]
  16. Theor Popul Biol. 1975 Apr;7(2):256-76 [PMID: 1145509]
  17. Proc Natl Acad Sci U S A. 2023 Oct 3;120(40):e2302424120 [PMID: 37748058]
  18. J Mol Evol. 1985;22(2):160-74 [PMID: 3934395]
  19. Trends Ecol Evol. 2019 Jun;34(6):531-544 [PMID: 30885412]
  20. Genetics. 1997 Jul;146(3):1197-206 [PMID: 9215920]
  21. Ecol Evol. 2021 May 01;11(11):5828-5843 [PMID: 34141187]
  22. Mol Ecol. 2008 Jan;17(1):30-44 [PMID: 18034800]
  23. Syst Biol. 2016 Sep;65(5):910-24 [PMID: 27288477]
  24. Mol Ecol. 2012 Jul;21(14):3403-18 [PMID: 22646281]
  25. Commun Biol. 2020 Jul 16;3(1):387 [PMID: 32678279]
  26. J Mol Evol. 1994 Sep;39(3):306-14 [PMID: 7932792]
  27. Mol Biol Evol. 2002 Dec;19(12):2092-100 [PMID: 12446801]
  28. Science. 2023 Sep 29;381(6665):eade2833 [PMID: 37769075]
  29. Trends Ecol Evol. 2019 May;34(5):400-415 [PMID: 30824193]
  30. Nat Rev Genet. 2003 Jul;4(7):535-43 [PMID: 12838345]
  31. Mol Biol Evol. 2006 Mar;23(3):691-700 [PMID: 16364968]
  32. Mol Ecol. 2019 Apr;28(7):1765-1783 [PMID: 30770598]
  33. Mol Ecol. 2020 Oct;29(19):3667-3683 [PMID: 32762086]
  34. BMC Evol Biol. 2010 Apr 30;10:118 [PMID: 20429950]
  35. Genet Mol Res. 2006 Jul 31;5(3):466-74 [PMID: 17117361]
  36. Evolution. 2008 Dec;62(12):3117-34 [PMID: 19087188]
  37. Genetics. 2008 Jul;179(3):1409-24 [PMID: 18562660]
  38. Bioinformatics. 2014 Apr 15;30(8):1187-1189 [PMID: 24389659]
  39. Proc Biol Sci. 2014 Nov 7;281(1794):20141369 [PMID: 25253456]
  40. Mol Ecol. 2015 Mar;24(6):1164-71 [PMID: 25678037]
  41. Evol Bioinform Online. 2007 Mar 02;3:41-4 [PMID: 19430603]
  42. Nat Commun. 2018 Mar 2;9(1):906 [PMID: 29500409]
  43. Evol Biol. 2012 Jun;39(2):255-261 [PMID: 22707806]
  44. Mol Ecol. 2014 Nov;23(21):5276-90 [PMID: 25223395]
  45. Genetics. 2013 Mar;193(3):953-71 [PMID: 23307901]
  46. Mol Biol Evol. 2010 Apr;27(4):905-20 [PMID: 19955477]
  47. Genetics. 1989 Nov;123(3):585-95 [PMID: 2513255]
  48. Mol Ecol. 2014 Sep;23(18):4458-71 [PMID: 25113024]

Word Cloud

Created with Highcharts 10.0.0fusionpopulationlineagedeclinesignaturesnumberBayesianskylinedemographichistorymerginghaplotypeversusdatasetsalsoallocationsequencinglocisummarystatisticsneutralityusingextendedplotscloselyresembleAccurateinterpretationgeneticpasteventscrucialreconstructingevolutionaryLineagecompleteresultingsinglepanmicticspecialcasesecondarycontactseldomconsideredcircumstancescandistinguishedsizeconstancygrowthbottleneckinvestigatedMulti-locusdatasimulatedmodelsdifferentdivergencesamplinglagtimesD:Lratiospseudo-observeddifferedfixedamountresourcessampledalleleslengthDistinguishability10untruenon-fusionscenariosquantifiedbasedsixtestsanalyzedResultsshoweddecline-highdistinguishabilitygenerallylimitedfavorablescenarioD:L���=���9sensitivecoupledoptimalresourcemaximizingAlsooftenerroneouslyinferredAwarenesspotentialcarryhallmarkscriticalGeneticplotfission���fusiontestphylogeography

Similar Articles

Cited By