Alkyl gallates inhibit serine -acetyltransferase in bacteria and enhance susceptibility of drug-resistant Gram-negative bacteria to antibiotics.

Touya Toyomoto, Katsuhiko Ono, Tomoo Shiba, Kenta Momitani, Tianli Zhang, Hiroyasu Tsutsuki, Takeshi Ishikawa, Kanae Hoso, Koma Hamada, Azizur Rahman, Liping Wen, Yosuke Maeda, Keiichi Yamamoto, Masao Matsuoka, Kenjiro Hanaoka, Takuro Niidome, Takaaki Akaike, Tomohiro Sawa
Author Information
  1. Touya Toyomoto: Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
  2. Katsuhiko Ono: Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
  3. Tomoo Shiba: Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan.
  4. Kenta Momitani: Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan.
  5. Tianli Zhang: Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
  6. Hiroyasu Tsutsuki: Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
  7. Takeshi Ishikawa: Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan.
  8. Kanae Hoso: Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
  9. Koma Hamada: Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan.
  10. Azizur Rahman: Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
  11. Liping Wen: Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
  12. Yosuke Maeda: Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
  13. Keiichi Yamamoto: Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
  14. Masao Matsuoka: Department of Hematology, Rheumatology, and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
  15. Kenjiro Hanaoka: Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan.
  16. Takuro Niidome: Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan.
  17. Takaaki Akaike: Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan.
  18. Tomohiro Sawa: Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.

Abstract

A principal concept in developing antibacterial agents with selective toxicity is blocking metabolic pathways that are critical for bacterial growth but that mammalian cells lack. Serine -acetyltransferase (CysE) is an enzyme in many bacteria that catalyzes the first step in l-cysteine biosynthesis by transferring an acetyl group from acetyl coenzyme A (acetyl-CoA) to l-serine to form -acetylserine. Because mammalian cells lack this l-cysteine biosynthesis pathway, developing an inhibitor of CysE has been thought to be a way to establish a new class of antibacterial agents. Here, we demonstrated that alkyl gallates such as octyl gallate (OGA) could act as potent CysE inhibitors and in bacteria. Mass spectrometry analyses indicated that OGA treatment markedly reduced intrabacterial levels of l-cysteine and its metabolites including glutathione and glutathione persulfide in to a level similar to that found in lacking the gene. Consistent with the reduction of those antioxidant molecules in bacteria, became vulnerable to hydrogen peroxide-mediated bacterial killing in the presence of OGA. More important, OGA treatment intensified susceptibilities of metallo-β-lactamase-expressing Gram-negative bacteria ( and ) to carbapenem. Structural analyses showed that alkyl gallate bound to the binding site for acetyl-CoA that limits access of acetyl-CoA to the active site. Our data thus suggest that CysE inhibitors may be used to treat infectious diseases caused by drug-resistant Gram-negative bacteria not only via direct antibacterial activity but also by enhancing therapeutic potentials of existing antibiotics.

Keywords

References

  1. Mol Microbiol. 2003 Apr;48(1):77-84 [PMID: 12657046]
  2. Infect Disord Drug Targets. 2013 Apr;13(2):85-115 [PMID: 23808874]
  3. Curr Protoc Mol Biol. 2007 Jul;Chapter 1:1.17.1-1.17.8 [PMID: 18265391]
  4. J Med Chem. 2016 Jul 28;59(14):6848-59 [PMID: 27379713]
  5. Nucleic Acids Res. 2009 Jan;37(Database issue):D455-8 [PMID: 18974178]
  6. J Agric Food Chem. 2002 Nov 6;50(23):6692-6 [PMID: 12405763]
  7. Free Radic Biol Med. 2017 May;106:69-79 [PMID: 28189853]
  8. Proc Natl Acad Sci U S A. 2014 May 27;111(21):7606-11 [PMID: 24733942]
  9. Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4678-83 [PMID: 12682299]
  10. J Bacteriol. 2017 Jul 25;199(16): [PMID: 28559296]
  11. J Antibiot (Tokyo). 2023 Aug;76(8):431-473 [PMID: 37291465]
  12. Antimicrob Agents Chemother. 2005 Feb;49(2):549-55 [PMID: 15673731]
  13. J Biol Chem. 2008 Nov 14;283(46):31567-74 [PMID: 18799456]
  14. Lancet. 2022 Feb 12;399(10325):629-655 [PMID: 35065702]
  15. Nat Commun. 2017 Oct 27;8(1):1177 [PMID: 29079736]
  16. Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55 [PMID: 15299926]
  17. Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12989-94 [PMID: 14569030]
  18. ACS Chem Biol. 2021 Apr 16;16(4):731-739 [PMID: 33781062]
  19. J Agric Food Chem. 2004 Mar 10;52(5):1072-6 [PMID: 14995100]
  20. Biomolecules. 2020 Aug 27;10(9): [PMID: 32867265]
  21. Cell Chem Biol. 2019 May 16;26(5):686-698.e4 [PMID: 30853417]
  22. Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8327-32 [PMID: 15928073]
  23. Int J Biol Macromol. 2020 May 15;151:1240-1249 [PMID: 31751684]
  24. Infect Control Hosp Epidemiol. 2010 Nov;31 Suppl 1:S7-10 [PMID: 20929376]
  25. Science. 2021 Jun 11;372(6547):1169-1175 [PMID: 34112687]
  26. Food Microbiol. 2021 Oct;99:103817 [PMID: 34119102]
  27. Clin Microbiol Rev. 2018 Mar 14;31(2): [PMID: 29540434]
  28. Arch Pharm (Weinheim). 2020 Nov;353(11):e2000168 [PMID: 32776618]
  29. Trends Microbiol. 2016 Nov;24(11):862-871 [PMID: 27430191]
  30. 3 Biotech. 2021 Aug;11(8):373 [PMID: 34367865]
  31. Rapid Commun Mass Spectrom. 2009 May;23(10):1483-92 [PMID: 19350529]
  32. FEMS Microbiol Rev. 2006 Nov;30(6):825-40 [PMID: 17064282]
  33. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 [PMID: 15572765]
  34. ACS Med Chem Lett. 2020 Feb 13;11(5):790-797 [PMID: 32435386]
  35. Diagn Microbiol Infect Dis. 2005 Nov;53(3):241-4 [PMID: 16243474]
  36. Food Chem. 2022 Nov 30;395:133546 [PMID: 35802979]
  37. BMC Genomics. 2009 Jul 01;10:291 [PMID: 19570206]
  38. Res Microbiol. 2021 Sep-Oct;172(6):103852 [PMID: 34246779]
  39. Clin Infect Dis. 2009 Jan 1;48(1):1-12 [PMID: 19035777]
  40. PLoS One. 2015 Apr 02;10(3):e0120619 [PMID: 25837721]
  41. J Clin Microbiol. 2004 Nov;42(11):5256-63 [PMID: 15528723]
  42. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32 [PMID: 20124692]
  43. Biosci Rep. 2022 Oct 28;42(10): [PMID: 36148777]
  44. Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):966-71 [PMID: 11805338]
  45. Microb Pathog. 2019 Jun;131:218-226 [PMID: 30974158]
  46. Bioorg Med Chem Lett. 2001 Feb 12;11(3):347-50 [PMID: 11212107]
  47. Antibiotics (Basel). 2022 Feb 18;11(2): [PMID: 35203868]
  48. Food Chem. 2021 Jun 1;346:128949 [PMID: 33418419]
  49. Anal Chem. 2009 Jul 1;81(13):5172-9 [PMID: 19480430]
  50. Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:141-165 [PMID: 15012189]
  51. Biomed Pharmacother. 2018 Jul;103:1577-1584 [PMID: 29864945]
  52. Int J Food Microbiol. 2021 Mar 16;342:109093 [PMID: 33607540]

Word Cloud

Created with Highcharts 10.0.0bacteriaCysEOGAantibacteriall-cysteineacetyl-CoAalkylgallatesinhibitorsGram-negativedevelopingagentsbacterialmammaliancellslack-acetyltransferasebiosynthesisacetylgallateanalysestreatmentglutathionesitedrug-resistantantibioticsserineprincipalconceptselectivetoxicityblockingmetabolicpathwayscriticalgrowthSerineenzymemanycatalyzesfirststeptransferringgroupcoenzymel-serineform-acetylserinepathwayinhibitorthoughtwayestablishnewclassdemonstratedoctylactpotentMassspectrometryindicatedmarkedlyreducedintrabacteriallevelsmetabolitesincludingpersulfidelevelsimilarfoundlackinggeneConsistentreductionantioxidantmoleculesbecamevulnerablehydrogenperoxide-mediatedkillingpresenceimportantintensifiedsusceptibilitiesmetallo-β-lactamase-expressingcarbapenemStructuralshowedboundbindinglimitsaccessactivedatathussuggestmayusedtreatinfectiousdiseasescausedviadirectactivityalsoenhancingtherapeuticpotentialsexistingAlkylinhibitenhancesusceptibilityantimicrobialresistancecysteinepersulfidesO-acetyltransferase

Similar Articles

Cited By