DeepAutoGlioma: a deep learning autoencoder-based multi-omics data integration and classification tools for glioma subtyping.

Sana Munquad, Asim Bikas Das
Author Information
  1. Sana Munquad: Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India.
  2. Asim Bikas Das: Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India. asimbikas@nitw.ac.in.

Abstract

BACKGROUND AND OBJECTIVE: The classification of glioma subtypes is essential for precision therapy. Due to the heterogeneity of gliomas, the subtype-specific molecular pattern can be captured by integrating and analyzing high-throughput omics data from different genomic layers. The development of a deep-learning framework enables the integration of multi-omics data to classify the glioma subtypes to support the clinical diagnosis.
RESULTS: Transcriptome and methylome data of glioma patients were preprocessed, and differentially expressed features from both datasets were identified. Subsequently, a Cox regression analysis determined genes and CpGs associated with survival. Gene set enrichment analysis was carried out to examine the biological significance of the features. Further, we identified CpG and gene pairs by mapping them in the promoter region of corresponding genes. The methylation and gene expression levels of these CpGs and genes were embedded in a lower-dimensional space with an autoencoder. Next, ANN and CNN were used to classify subtypes using the latent features from embedding space. CNN performs better than ANN for subtyping lower-grade gliomas (LGG) and glioblastoma multiforme (GBM). The subtyping accuracy of CNN was 98.03% (± 0.06) and 94.07% (± 0.01) in LGG and GBM, respectively. The precision of the models was 97.67% in LGG and 90.40% in GBM. The model sensitivity was 96.96% in LGG and 91.18% in GBM. Additionally, we observed the superior performance of CNN with external datasets. The genes and CpGs pairs used to develop the model showed better performance than the random CpGs-gene pairs, preprocessed data, and single omics data.
CONCLUSIONS: The current study showed that a novel feature selection and data integration strategy led to the development of DeepAutoGlioma, an effective framework for diagnosing glioma subtypes.

Keywords

References

  1. Front Genet. 2022 Mar 28;13:855420 [PMID: 35419027]
  2. J Clin Med. 2018 Oct 13;7(10): [PMID: 30322114]
  3. Adv Exp Med Biol. 2020;1253:3-55 [PMID: 32445090]
  4. Heredity (Edinb). 2010 Jul;105(1):4-13 [PMID: 20461105]
  5. World J Surg Oncol. 2022 May 10;20(1):146 [PMID: 35538578]
  6. Nat Biotechnol. 2020 Jun;38(6):675-678 [PMID: 32444850]
  7. Handb Clin Neurol. 2016;134:71-95 [PMID: 26948349]
  8. Comput Biol Med. 2022 Sep;148:105832 [PMID: 35834966]
  9. BMC Med Inform Decis Mak. 2020 Jul 9;20(Suppl 3):129 [PMID: 32646413]
  10. Front Psychol. 2017 Sep 20;8:1628 [PMID: 28979229]
  11. Nat Commun. 2019 Apr 3;10(1):1523 [PMID: 30944313]
  12. PLoS Comput Biol. 2022 Jan 26;18(1):e1009826 [PMID: 35081109]
  13. Brain Tumor Res Treat. 2015 Apr;3(1):8-23 [PMID: 25977902]
  14. Neuro Oncol. 2013 Nov;15 Suppl 2:ii1-56 [PMID: 24137015]
  15. Sci Rep. 2021 Mar 18;11(1):6265 [PMID: 33737557]
  16. BMC Bioinformatics. 2019 Oct 28;20(1):527 [PMID: 31660856]
  17. Front Genet. 2018 Oct 18;9:477 [PMID: 30405689]
  18. BMC Cancer. 2022 Jun 11;22(1):642 [PMID: 35690717]
  19. Brief Funct Genomics. 2022 Sep 16;21(5):408-421 [PMID: 35923100]
  20. ScientificWorldJournal. 2013;2013:417413 [PMID: 23533349]
  21. Asian J Neurosurg. 2019 Nov 25;14(4):1106-1111 [PMID: 31903347]
  22. Int J Mol Sci. 2020 Jan 30;21(3): [PMID: 32019108]
  23. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34791014]
  24. Cancer Cell. 2017 Jul 10;32(1):42-56.e6 [PMID: 28697342]
  25. Neuro Oncol. 2018 Oct 9;20(11):1462-1474 [PMID: 29939339]
  26. Cancer Treat Res Commun. 2023;36:100703 [PMID: 37271069]
  27. J Exp Clin Cancer Res. 2019 Jun 20;38(1):270 [PMID: 31221203]
  28. Am J Cancer Res. 2020 Jul 01;10(7):1954-1978 [PMID: 32774995]
  29. BMC Cancer. 2019 Sep 12;19(1):911 [PMID: 31510944]
  30. Nephron Clin Pract. 2011;119(3):c255-60 [PMID: 21921637]
  31. Nat Rev Neurol. 2019 Jul;15(7):405-417 [PMID: 31227792]
  32. N Engl J Med. 2015 Jun 25;372(26):2481-98 [PMID: 26061751]
  33. BMC Cancer. 2022 Jan 20;22(1):86 [PMID: 35057766]

Word Cloud

Created with Highcharts 10.0.0datagliomaCNNLGGGBMsubtypesgenesintegrationfeaturesCpGspairssubtypingclassificationprecisiongliomasomicsdevelopmentframeworkmulti-omicsclassifypreprocesseddatasetsidentifiedanalysisgenespaceANNusedbettermultiforme± 0modelperformanceshowedBACKGROUNDANDOBJECTIVE:essentialtherapyDueheterogeneitysubtype-specificmolecularpatterncancapturedintegratinganalyzinghigh-throughputdifferentgenomiclayersdeep-learningenablessupportclinicaldiagnosisRESULTS:TranscriptomemethylomepatientsdifferentiallyexpressedSubsequentlyCoxregressiondeterminedassociatedsurvivalGenesetenrichmentcarriedexaminebiologicalsignificanceCpGmappingpromoterregioncorrespondingmethylationexpressionlevelsembeddedlower-dimensionalautoencoderNextusinglatentembeddingperformslower-gradeglioblastomaaccuracy9803%069407%01respectivelymodels9767%9040%sensitivity9696%9118%AdditionallyobservedsuperiorexternaldeveloprandomCpGs-genesingleCONCLUSIONS:currentstudynovelfeatureselectionstrategyledDeepAutoGliomaeffectivediagnosingDeepAutoGlioma:deeplearningautoencoder-basedtoolsAutoencoderConvolutionalneuralnetworkGlioblastomaLower-gradeMulti-omics

Similar Articles

Cited By (3)