Wide-Range Synaptic Current Responses with a Liquid Ga Electrode via a Surface Redox Reaction in a NaOH Solution at Different Molar Concentrations.

Dahee Seo, Seongyeon Kang, Heejoong Ryou, Myunghun Shin, Wan Sik Hwang
Author Information
  1. Dahee Seo: Department of Materials Science and Engineering, Korea Aerospace University, Goyang 10540, Republic of Korea.
  2. Seongyeon Kang: Department of Materials Science and Engineering, Korea Aerospace University, Goyang 10540, Republic of Korea.
  3. Heejoong Ryou: Department of Materials Science and Engineering, Korea Aerospace University, Goyang 10540, Republic of Korea.
  4. Myunghun Shin: School of Electronics and Information Engineering, Korea Aerospace University, Goyang 10540, Republic of Korea.
  5. Wan Sik Hwang: Department of Materials Science and Engineering, Korea Aerospace University, Goyang 10540, Republic of Korea. ORCID

Abstract

A liquid Ga-based synaptic device with two-terminal electrodes is demonstrated in NaOH solutions at 50 °C. The proposed electrochemical redox device using the liquid Ga electrode in the NaOH solution can emulate various biological synapses that require different decay constants. The device exhibits a wide range of current decay times from 60 to 320 ms at different NaOH mole concentrations from 0.2 to 1.6 M. This research marks a step forward in the development of flexible and biocompatible neuromorphic devices that can be utilized for a range of applications where different synaptic strengths are required lasting from a few milliseconds to seconds.

References

  1. ACS Omega. 2022 Jun 03;7(23):19872-19878 [PMID: 35721935]
  2. Nanomaterials (Basel). 2020 Jul 23;10(8): [PMID: 32717952]
  3. ACS Appl Mater Interfaces. 2016 Jan 13;8(1):6-10 [PMID: 26693856]
  4. Small. 2017 May;13(20): [PMID: 28296020]
  5. ACS Nano. 2020 Jun 23;14(6):7628-7638 [PMID: 32492337]
  6. ACS Nano. 2020 Jan 28;14(1):746-754 [PMID: 31887010]
  7. Nanoscale. 2021 May 21;13(19):8864-8874 [PMID: 33949417]
  8. Nat Nanotechnol. 2022 May;17(5):507-513 [PMID: 35347271]
  9. Nat Commun. 2021 Apr 30;12(1):2480 [PMID: 33931638]
  10. Nat Mater. 2017 Apr;16(4):414-418 [PMID: 28218920]
  11. Acc Chem Res. 2019 Apr 16;52(4):964-974 [PMID: 30896916]
  12. Nanoscale. 2019 Mar 21;11(12):5684-5692 [PMID: 30855052]
  13. Adv Mater. 2020 Mar;32(11):e1906899 [PMID: 31984573]
  14. Adv Mater. 2021 Nov;33(46):e2006469 [PMID: 33837601]
  15. Sci Adv. 2020 Jul 3;6(27): [PMID: 32937458]
  16. Sci Adv. 2020 Jul 10;6(28): [PMID: 32937532]
  17. Nat Commun. 2014;5:3158 [PMID: 24452193]
  18. Nanomicro Lett. 2021 Mar 6;13(1):85 [PMID: 34138298]
  19. Adv Mater. 2016 Jul;28(28):5916-22 [PMID: 27167384]
  20. Nanoscale Horiz. 2021 Feb 1;6(2):139-147 [PMID: 33367448]
  21. Nat Neurosci. 2010 Sep;13(9):1144-9 [PMID: 20711183]

Word Cloud

Created with Highcharts 10.0.0NaOHdevicedifferentliquidsynapticGacandecayrangeGa-basedtwo-terminalelectrodesdemonstratedsolutions50°Cproposedelectrochemicalredoxusingelectrodesolutionemulatevariousbiologicalsynapsesrequireconstantsexhibitswidecurrenttimes60320msmoleconcentrations0216MresearchmarksstepforwarddevelopmentflexiblebiocompatibleneuromorphicdevicesutilizedapplicationsstrengthsrequiredlastingmillisecondssecondsWide-RangeSynapticCurrentResponsesLiquidElectrodeviaSurfaceRedoxReactionSolutionDifferentMolarConcentrations

Similar Articles

Cited By