Comprehensive evaluation of community human settlement resilience and spatial characteristics based on the supply-demand mismatch between health activities and environment: a case study of downtown Shanghai, China.

Qikang Zhong, Yue Chen, Jiale Yan
Author Information
  1. Qikang Zhong: School of Architecture and Art, Central South University, Changsha, 410083, China.
  2. Yue Chen: School of Architecture and Art, Central South University, Changsha, 410083, China. chenyue0905@126.com. ORCID
  3. Jiale Yan: Irvine Valley College, Irvine, CA, 92618, USA.

Abstract

INTRODUCTION: Under globalization, human settlement has become a major risk factor affecting life. The relationship between humans and the environment is crucial for improving community resilience and coping with globalization. This study focuses on the key contradictions of community development under globalization, exploring community resilience by analyzing the mismatch between residents' health activities and the environment.
METHODS: Using data from Shanghai downtown, including land use, Sports app, geospatial and urban statistics, this paper constructs a comprehensive community resilience index (CRI) model based on the DPSIR model. This model enables quantitative analysis of the spatial and temporal distribution of Community Human Settlement Resilience (CR). Additionally, the paper uses geodetector and Origin software to analyze the coupling relationship between drivers and human settlement resilience.
RESULTS: i) The scores of CR showed a "slide-shaped" fluctuation difference situation; ii) The spatial pattern of CR showed a "pole-core agglomeration and radiation" type and a "ring-like agglomeration and radiation" type. iii) Distance to bus stops, average annual temperature, CO emissions, building density and number of jogging trajectories are the dominant factors affecting the resilience level of community human settlement.
CONCLUSION: This paper contributes to the compilation of human settlement evaluation systems globally, offering insights into healthy community and city assessments worldwide. The findings can guide the creation of similar evaluation systems and provide valuable references for building healthy communities worldwide.

Keywords

References

  1. BMC Public Health. 2022 Mar 2;22(1):420 [PMID: 35236315]
  2. Front Public Health. 2022 May 24;10:865459 [PMID: 35685765]
  3. Environ Sci Pollut Res Int. 2022 Jun;29(26):39807-39826 [PMID: 35113377]
  4. Rev Environ Health. 2019 Sep 25;34(3):235-244 [PMID: 31473690]
  5. Psychoneuroendocrinology. 2016 Mar;65:138-48 [PMID: 26773841]
  6. Risk Anal. 2019 Nov;39(11):2479-2498 [PMID: 31290175]
  7. Gerontologist. 2019 May 17;59(3):436-446 [PMID: 29401219]
  8. Sci Total Environ. 2021 Dec 20;801:149528 [PMID: 34418629]
  9. Disaster Med Public Health Prep. 2021 Oct;15(5):661-668 [PMID: 32669152]
  10. J Acad Nutr Diet. 2014 Feb;114(2):257-265 [PMID: 24119533]
  11. Front Public Health. 2022 Jul 12;10:950348 [PMID: 35910910]
  12. Int Psychogeriatr. 2020 Feb;32(2):173-182 [PMID: 32017867]
  13. Int J Environ Res Public Health. 2022 Sep 27;19(19): [PMID: 36231596]
  14. Curr Psychol. 2022;41(11):8132-8146 [PMID: 34253948]
  15. Int J Environ Res Public Health. 2019 Jun 30;16(13): [PMID: 31261989]
  16. J Urban Health. 2010 Jan;87(1):29-43 [PMID: 19949995]
  17. Int J Environ Res Public Health. 2022 Sep 12;19(18): [PMID: 36141744]
  18. Int J Environ Res Public Health. 2015 Nov 20;12(11):14887-97 [PMID: 26610539]
  19. J Appl Ecol. 2016 Feb 1;53(1):120-129 [PMID: 26966320]
  20. Int J Environ Res Public Health. 2018 Aug 10;15(8): [PMID: 30103456]
  21. BMC Public Health. 2019 Oct 7;19(1):1279 [PMID: 31590643]
  22. Am Psychol. 2011 Jan;66(1):43-51 [PMID: 21219047]
  23. J Environ Manage. 2018 May 1;213:353-362 [PMID: 29502020]
  24. Environ Sci Pollut Res Int. 2022 Nov;29(54):81337-81350 [PMID: 35732887]
  25. Int J Environ Res Public Health. 2022 Jan 12;19(2): [PMID: 35055638]
  26. Environ Sci Pollut Res Int. 2022 Aug;29(40):60153-60172 [PMID: 35414159]
  27. Health Promot Chronic Dis Prev Can. 2016 Sep;36(9):175-84 [PMID: 27670920]
  28. Environ Sci Pollut Res Int. 2023 Jan;30(2):3726-3742 [PMID: 35951239]
  29. Ecosyst Serv. 2019 May 10;26(Pt A):79-94 [PMID: 31110934]
  30. Int J Environ Res Public Health. 2022 May 30;19(11): [PMID: 35682246]

MeSH Term

Humans
China
Cities
Health Behavior
Environment
Urban Population

Word Cloud

Created with Highcharts 10.0.0communityresiliencehumansettlementmodelglobalizationShanghaipaperspatialCRevaluationaffectingrelationshipenvironmentstudymismatchhealthactivitiesdowntownbasedDPSIRCommunityshowedagglomerationradiation"typebuildingsystemshealthyworldwideINTRODUCTION:becomemajorriskfactorlifehumanscrucialimprovingcopingfocuseskeycontradictionsdevelopmentexploringanalyzingresidents'METHODS:UsingdataincludinglanduseSportsappgeospatialurbanstatisticsconstructscomprehensiveindexCRIenablesquantitativeanalysistemporaldistributionHumanSettlementResilienceAdditionallyusesgeodetectorOriginsoftwareanalyzecouplingdriversRESULTS:scores"slide-shaped"fluctuationdifferencesituationiipattern"pole-core"ring-likeiiiDistancebusstopsaverageannualtemperatureCOemissionsdensitynumberjoggingtrajectoriesdominantfactorslevelCONCLUSION:contributescompilationgloballyofferinginsightscityassessmentsfindingscanguidecreationsimilarprovidevaluablereferencescommunitiesComprehensivecharacteristicssupply-demandenvironment:caseChinaDowntownGeographicaldetectorSpatialheterogeneity

Similar Articles

Cited By