Multi-omics integration analysis unveils heterogeneity in breast cancer at the individual level.

Zhangxiang Zhao, Tongzhu Jin, Bo Chen, Qi Dong, Mingyue Liu, Jiayu Guo, Xiaoying Song, Yawei Li, Tingting Chen, Huiming Han, Haihai Liang, Yunyan Gu
Author Information
  1. Zhangxiang Zhao: The Sino-Russian Medical Research Center of Jinan University, The Institute of Chronic Disease of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China.
  2. Tongzhu Jin: Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
  3. Bo Chen: Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
  4. Qi Dong: Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
  5. Mingyue Liu: Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
  6. Jiayu Guo: Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
  7. Xiaoying Song: Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
  8. Yawei Li: Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
  9. Tingting Chen: Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
  10. Huiming Han: Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
  11. Haihai Liang: The Sino-Russian Medical Research Center of Jinan University, The Institute of Chronic Disease of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China.
  12. Yunyan Gu: Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.

Abstract

Identifying robust breast cancer subtypes will help to reveal the cancer heterogeneity. However, previous breast cancer subtypes were based on population-level quantitative gene expression, which is affected by batch effects and cannot be applied to individuals. We detected differential gene expression, genomic, and epigenomic alterations to identify driver differential expression at the individual level. The individual driver differential expression reflected the breast cancer patients' heterogeneity and revealed four subtypes. Mesenchymal subtype as the most aggressive subtype harbored deletion and downregulated expression of genes in chromosome 11q23 region. Specifically, silencing of the gene in 11q23 promoted the invasion and migration of breast cancer cells in vitro by the epithelial-mesenchymal transition. The immunologically hot subtype displayed an immune-hot microenvironment, including high T-cell infiltration and upregulated PD-1 and CTLA4. Luminal and genomic-unstable subtypes showed opposite macrophage polarization, which may be regulated by the ligand-receptor pairs of CD99. The integration of multi-omics data at the individual level provides a powerful framework for elucidating the heterogeneity of breast cancer.

Keywords

References

  1. J Transl Med. 2017 Feb 8;15(1):26 [PMID: 28178989]
  2. Nature. 2012 Mar 28;483(7391):603-7 [PMID: 22460905]
  3. Nat Rev Cancer. 2018 Nov;18(11):696-705 [PMID: 30293088]
  4. Sci Signal. 2020 Oct 06;13(652): [PMID: 33023985]
  5. Cancers (Basel). 2021 Mar 19;13(6): [PMID: 33808555]
  6. Ann Oncol. 2021 Feb;32(2):240-249 [PMID: 33242536]
  7. Proc Natl Acad Sci U S A. 2020 Oct 20;117(42):26340-26346 [PMID: 33020282]
  8. Cancer Res. 2020 Jun 1;80(11):2311-2324 [PMID: 32179512]
  9. Oncogene. 2009 Nov 26;28(47):4189-200 [PMID: 19734946]
  10. Nat Rev Drug Discov. 2019 Mar;18(3):197-218 [PMID: 30610226]
  11. Nat Genet. 2013 Oct;45(10):1113-20 [PMID: 24071849]
  12. Nat Commun. 2020 Jul 27;11(1):3747 [PMID: 32719340]
  13. Nucleic Acids Res. 2022 Jan 7;50(D1):D165-D173 [PMID: 34850907]
  14. Nat Commun. 2014 Jun 11;5:4114 [PMID: 24916345]
  15. Nat Med. 2018 Oct;24(10):1550-1558 [PMID: 30127393]
  16. Nucleic Acids Res. 2011 Jan;39(Database issue):D685-90 [PMID: 21071392]
  17. Nucleic Acids Res. 2018 Nov 16;46(20):10546-10562 [PMID: 30295871]
  18. J Clin Oncol. 2009 Mar 10;27(8):1160-7 [PMID: 19204204]
  19. J Natl Cancer Inst. 2014 Dec 04;107(1):357 [PMID: 25479802]
  20. Brief Bioinform. 2019 Mar 22;20(2):482-491 [PMID: 29040359]
  21. Breast Cancer Res Treat. 2014 Nov;148(2):269-77 [PMID: 25292421]
  22. Blood. 2013 Feb 21;121(8):1265-75 [PMID: 23169781]
  23. Biomed Res Int. 2014;2014:651751 [PMID: 25101291]
  24. Ann Lab Med. 2020 Mar;40(2):114-121 [PMID: 31650727]
  25. Nat Commun. 2017 Oct 10;8(1):839 [PMID: 29018224]
  26. Nat Commun. 2021 Jan 5;12(1):124 [PMID: 33402734]
  27. Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6853-8 [PMID: 23569271]
  28. EMBO J. 2021 Sep 15;40(18):e108389 [PMID: 34459009]
  29. Breast Cancer Res. 2019 Feb 28;21(1):34 [PMID: 30819233]
  30. CA Cancer J Clin. 2018 Nov;68(6):394-424 [PMID: 30207593]
  31. Oncogene. 2021 Jul;40(27):4604-4614 [PMID: 34131286]
  32. Brief Bioinform. 2019 Jul 19;20(4):1269-1279 [PMID: 29272335]
  33. Cell Death Dis. 2017 Jun 15;8(6):e2872 [PMID: 28617437]
  34. J Pathol. 2014 Apr;232(5):522-33 [PMID: 24374933]
  35. J Natl Cancer Inst. 2014 Dec 04;107(1):386 [PMID: 25479803]
  36. Cell. 2020 Nov 25;183(5):1436-1456.e31 [PMID: 33212010]
  37. Nat Med. 2018 Oct;24(10):1545-1549 [PMID: 30127394]

MeSH Term

Humans
Female
Breast Neoplasms
Gene Expression Profiling
Multiomics
Genomics
Epigenomics
Tumor Microenvironment

Word Cloud

Created with Highcharts 10.0.0cancerbreastexpressionindividualsubtypesheterogeneitydifferentialgenelevelsubtypedriver11q23integrationmulti-omicsIdentifyingrobustwillhelprevealHoweverpreviousbasedpopulation-levelquantitativeaffectedbatcheffectsappliedindividualsdetectedgenomicepigenomicalterationsidentifyreflectedpatients'revealedfourMesenchymalaggressiveharboreddeletiondownregulatedgeneschromosomeregionSpecificallysilencingpromotedinvasionmigrationcellsvitroepithelial-mesenchymaltransitionimmunologicallyhotdisplayedimmune-hotmicroenvironmentincludinghighT-cellinfiltrationupregulatedPD-1CTLA4Luminalgenomic-unstableshowedoppositemacrophagepolarizationmayregulatedligand-receptorpairsCD99dataprovidespowerfulframeworkelucidatingMulti-omicsanalysisunveilsBreast

Similar Articles

Cited By