Semisynthetic polymyxins with potent antibacterial activity and reduced kidney cell toxicity.

Cornelis J Slingerland, Vladyslav Lysenko, Samhita Chaudhuri, Charlotte M J Wesseling, Devon Barnes, Rosalinde Masereeuw, Nathaniel I Martin
Author Information
  1. Cornelis J Slingerland: Biological Chemistry Group, Institute of Biology Leiden, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands n.i.martin@biology.leidenuniv.nl. ORCID
  2. Vladyslav Lysenko: Biological Chemistry Group, Institute of Biology Leiden, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands n.i.martin@biology.leidenuniv.nl.
  3. Samhita Chaudhuri: Biological Chemistry Group, Institute of Biology Leiden, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands n.i.martin@biology.leidenuniv.nl.
  4. Charlotte M J Wesseling: Biological Chemistry Group, Institute of Biology Leiden, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands n.i.martin@biology.leidenuniv.nl.
  5. Devon Barnes: Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Utrecht University 3584 CG Utrecht The Netherlands.
  6. Rosalinde Masereeuw: Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Utrecht University 3584 CG Utrecht The Netherlands. ORCID
  7. Nathaniel I Martin: Biological Chemistry Group, Institute of Biology Leiden, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands n.i.martin@biology.leidenuniv.nl. ORCID

Abstract

The growing incidence of infections caused by multi-drug resistant Gram-negative bacteria has led to an increased use of last-resort antibiotics such as the polymyxins. Polymyxin therapy is limited by toxicity concerns, most notably nephrotoxicity. Recently we reported the development of a novel class of semisynthetic polymyxins with reduced toxicity wherein the N-terminal lipid and diaminobutyric acid residue are replaced by a cysteine-linked lipid featuring a reductively labile disulfide bond. In the present study we further explored the potential of this approach by also varying the amino acid residue directly adjacent to the polymyxin macrocycle. This led to the identification of new semisynthetic polymyxins that maintain the potent antibacterial activity of the clinically used polymyxin B while exhibiting a further reduction in toxicity toward human proximal tubule epithelial cells. Furthermore, these new polymyxins were found to effectively synergize with novobiocin, rifampicin, and erythromycin against -positive, polymyxin resistant .

References

  1. Diagn Microbiol Infect Dis. 2009 Dec;65(4):431-4 [PMID: 19733029]
  2. ACS Infect Dis. 2022 Sep 9;8(9):1731-1757 [PMID: 35946799]
  3. J Med Chem. 2013 Jun 27;56(12):5079-93 [PMID: 23735048]
  4. J Infect. 2021 Feb;82(2):207-215 [PMID: 33453286]
  5. Biophys J. 2005 Mar;88(3):1845-58 [PMID: 15596502]
  6. Bull Johns Hopkins Hosp. 1947 Jul;81(1):43-54 [PMID: 20259524]
  7. J Antibiot (Tokyo). 2017 Apr;70(4):386-394 [PMID: 28074057]
  8. Nat Commun. 2018 Jan 31;9(1):458 [PMID: 29386620]
  9. Cell Tissue Res. 2010 Feb;339(2):449-57 [PMID: 19902259]
  10. Toxicol Appl Pharmacol. 2005 May 1;204(3):329-42 [PMID: 15845422]
  11. J Med Chem. 2022 Dec 8;65(23):15878-15892 [PMID: 36399613]
  12. Lancet. 2022 Feb 12;399(10325):629-655 [PMID: 35065702]
  13. Acc Chem Res. 2021 Mar 16;54(6):1322-1333 [PMID: 33635073]
  14. Nat Rev Drug Discov. 2013 May;12(5):371-87 [PMID: 23629505]
  15. Antimicrob Agents Chemother. 2022 May 17;66(5):e0005422 [PMID: 35471042]
  16. Annu Rev Microbiol. 1984;38:237-64 [PMID: 6093683]
  17. J Antimicrob Chemother. 2003 Jul;52(1):1 [PMID: 12805255]
  18. Antibiotics (Basel). 2019 Mar 14;8(1): [PMID: 30875778]
  19. Peptides. 2012 Jun;35(2):248-52 [PMID: 22504013]
  20. Antimicrob Agents Chemother. 1984 Jun;25(6):701-5 [PMID: 6331296]
  21. J Am Chem Soc. 2003 Mar 5;125(9):2426-35 [PMID: 12603130]
  22. Nature. 1947 Aug 23;159(4060):263 [PMID: 20256217]
  23. ACS Infect Dis. 2022 Dec 9;8(12):2396-2404 [PMID: 36342383]
  24. ACS Infect Dis. 2020 Jun 12;6(6):1405-1412 [PMID: 31566948]
  25. ACS Infect Dis. 2019 Oct 11;5(10):1645-1656 [PMID: 31525992]
  26. Drug Discov Today. 2021 Sep;26(9):2152-2158 [PMID: 33798647]
  27. Expert Opin Drug Saf. 2015;14(11):1687-701 [PMID: 26365594]
  28. Antimicrob Agents Chemother. 1989 Sep;33(9):1428-34 [PMID: 2554795]
  29. Nat Commun. 2022 Mar 25;13(1):1625 [PMID: 35338128]
  30. Nat Rev Microbiol. 2020 May;18(5):267-274 [PMID: 31745330]
  31. Toxicol Sci. 2014 Feb;137(2):278-91 [PMID: 24189134]
  32. AMA Arch Intern Med. 1953 Aug;92(2):248-57 [PMID: 13079346]
  33. Microb Drug Resist. 2012 Apr;18(2):132-6 [PMID: 22196342]
  34. J Antimicrob Chemother. 2018 Feb 1;73(2):452-455 [PMID: 29149329]
  35. Drug Resist Updat. 1998;1(2):93-8 [PMID: 16904394]

Word Cloud

Created with Highcharts 10.0.0polymyxinstoxicitypolymyxinresistantledsemisyntheticreducedlipidacidresiduenewpotentantibacterialactivitygrowingincidenceinfectionscausedmulti-drugGram-negativebacteriaincreaseduselast-resortantibioticsPolymyxintherapylimitedconcernsnotablynephrotoxicityRecentlyreporteddevelopmentnovelclasswhereinN-terminaldiaminobutyricreplacedcysteine-linkedfeaturingreductivelylabiledisulfidebondpresentstudyexploredpotentialapproachalsovaryingaminodirectlyadjacentmacrocycleidentificationmaintainclinicallyusedBexhibitingreductiontowardhumanproximaltubuleepithelialcellsFurthermorefoundeffectivelysynergizenovobiocinrifampicinerythromycin-positiveSemisynthetickidneycell

Similar Articles

Cited By (1)