Physiology, gene expression, and epiphenotype of two Dianthus broteri polyploid cytotypes under temperature stress.

Javier L��pez-Jurado, Jes��s Picazo-Aragon��s, Conchita Alonso, Francisco Balao, Enrique Mateos-Naranjo
Author Information
  1. Javier L��pez-Jurado: Departamento de Biolog��a Vegetal y Ecolog��a, Facultad de Biolog��a, Universidad de Sevilla, Apdo. 1095, E-41080 Sevilla, Spain. ORCID
  2. Jes��s Picazo-Aragon��s: Departamento de Biolog��a Vegetal y Ecolog��a, Facultad de Biolog��a, Universidad de Sevilla, Apdo. 1095, E-41080 Sevilla, Spain. ORCID
  3. Conchita Alonso: Estaci��n Biol��gica de Do��ana, Consejo Superior de Investigaciones Cient��ficas (CSIC), Avda. Am��rico Vespucio 26, E-41092 Sevilla, Spain. ORCID
  4. Francisco Balao: Departamento de Biolog��a Vegetal y Ecolog��a, Facultad de Biolog��a, Universidad de Sevilla, Apdo. 1095, E-41080 Sevilla, Spain. ORCID
  5. Enrique Mateos-Naranjo: Departamento de Biolog��a Vegetal y Ecolog��a, Facultad de Biolog��a, Universidad de Sevilla, Apdo. 1095, E-41080 Sevilla, Spain. ORCID

Abstract

Increasing evidence supports a major role for abiotic stress response in the success of plant polyploids, which usually thrive in harsh environments. However, understanding the ecophysiology of polyploids is challenging due to interactions between genome doubling and natural selection. Here, we investigated physiological responses, gene expression, and the epiphenotype of two related Dianthus broteri cytotypes-with different genome duplications (4�� and 12��) and evolutionary trajectories-to short extreme temperature events (42/28 ��C and 9/5 ��C). The 12�� cytotype showed higher expression of stress-responsive genes (SWEET1, PP2C16, AI5L3, and ATHB7) and enhanced gas exchange compared with 4��. Under heat stress, both ploidies had greatly impaired physiological performance and altered gene expression, with reduced cytosine methylation. However, the 12�� cytotype exhibited remarkable physiological tolerance (maintaining gas exchange and water status via greater photochemical integrity and probably enhanced water storage) while down-regulating PP2C16 expression. Conversely, 4�� D. broteri was susceptible to thermal stress despite prioritizing water conservation, showing signs of non-stomatal photosynthetic limitations and irreversible photochemical damage. This cytotype also presented gene-specific expression patterns under heat, up-regulating ATHB7. These findings provide insights into divergent stress response strategies and physiological resistance resulting from polyploidy, highlighting its widespread influence on plant function.

Keywords

References

  1. Funct Plant Biol. 2002 Aug;29(8):999-1011 [PMID: 32689550]
  2. Plant Physiol Biochem. 2015 Dec;97:217-28 [PMID: 26485432]
  3. Am J Bot. 2020 Aug;107(8):1097-1100 [PMID: 32737992]
  4. Ann Bot. 2009 Oct;104(5):965-73 [PMID: 19633312]
  5. New Phytol. 2019 Apr;222(2):1076-1087 [PMID: 30585629]
  6. Am J Bot. 2018 Feb;105(2):161-171 [PMID: 29570227]
  7. Cytogenet Genome Res. 2013;140(2-4):270-85 [PMID: 23751292]
  8. Nat Ecol Evol. 2019 Feb;3(2):265-273 [PMID: 30697006]
  9. Funct Plant Biol. 2004 Oct;31(8):789-801 [PMID: 32688950]
  10. Plant Mol Biol. 2012 Nov;80(4-5):405-18 [PMID: 22968620]
  11. New Phytol. 2021 May;230(4):1336-1344 [PMID: 33452715]
  12. Int J Mol Sci. 2021 Feb 04;22(4): [PMID: 33557095]
  13. Plant Biol (Stuttg). 2018 Jan;20 Suppl 1:38-49 [PMID: 28637098]
  14. Int J Mol Sci. 2017 Apr 17;18(4): [PMID: 28420173]
  15. Plant J. 2020 Feb;101(4):885-896 [PMID: 31686424]
  16. Genetics. 2007 Aug;176(4):2055-67 [PMID: 17565939]
  17. Am J Bot. 2018 Mar;105(3):348-363 [PMID: 29719043]
  18. Plant Signal Behav. 2007 May;2(3):135-8 [PMID: 19516981]
  19. Plant Physiol. 2023 Jul 3;192(3):1821-1835 [PMID: 37002827]
  20. Plant Cell. 2021 Mar 22;33(1):11-26 [PMID: 33751096]
  21. J Plant Res. 2021 Jan;134(1):105-114 [PMID: 33155178]
  22. Nat Rev Mol Cell Biol. 2018 Aug;19(8):489-506 [PMID: 29784956]
  23. Plants (Basel). 2020 May 28;9(6): [PMID: 32481734]
  24. Science. 2011 Feb 4;331(6017):582-5 [PMID: 21163966]
  25. J Plant Res. 2018 Nov;131(6):961-972 [PMID: 29992395]
  26. Proc Biol Sci. 2020 Nov 25;287(1939):20202154 [PMID: 33203329]
  27. J Exp Bot. 2015 Dec;66(22):6991-7003 [PMID: 26417017]
  28. Trends Plant Sci. 2013 Dec;18(12):660-6 [PMID: 24001766]
  29. Plant Physiol. 2016 Mar;170(3):1435-44 [PMID: 26754665]
  30. Nat Commun. 2019 Dec 20;10(1):5818 [PMID: 31862875]
  31. Tree Physiol. 2018 Apr 1;38(4):630-640 [PMID: 29036397]
  32. New Phytol. 2010 Apr;186(1):5-17 [PMID: 20070540]
  33. Mol Ecol Resour. 2016 Jan;16(1):80-90 [PMID: 25944158]
  34. Plants (Basel). 2020 Mar 31;9(4): [PMID: 32244298]
  35. New Phytol. 2010 Jul;187(2):542-551 [PMID: 20456054]
  36. Annu Rev Plant Biol. 2007;58:377-406 [PMID: 17280525]
  37. New Phytol. 2016 Aug;211(3):899-911 [PMID: 27145723]
  38. Funct Plant Biol. 2022 Jan;49(2):155-169 [PMID: 34813421]
  39. New Phytol. 2009 Nov;184(3):721-731 [PMID: 19703115]
  40. PLoS One. 2017 Aug 17;12(8):e0183470 [PMID: 28817728]
  41. Physiol Plant. 2020 Apr;168(4):893-908 [PMID: 31587280]
  42. Curr Opin Plant Biol. 2018 Apr;42:1-7 [PMID: 29107221]
  43. Trends Plant Sci. 2023 Mar;28(3):264-266 [PMID: 36581517]
  44. New Phytol. 2011 Oct;192(1):256-265 [PMID: 21651562]
  45. J Exp Bot. 2021 Jul 28;72(15):5522-5533 [PMID: 33909906]
  46. Sci Rep. 2022 May 18;12(1):8322 [PMID: 35585117]
  47. Photosynth Res. 1986 Jan;10(1-2):51-62 [PMID: 24435276]
  48. J Exp Bot. 2008;59(7):1581-95 [PMID: 18436544]
  49. Nat Plants. 2021 Aug;7(8):1015-1025 [PMID: 34282286]
  50. PLoS One. 2013;8(1):e54231 [PMID: 23359800]
  51. Integr Comp Biol. 2020 Dec 16;60(6):1469-1480 [PMID: 32470117]
  52. New Phytol. 2019 Jan;221(2):1117-1127 [PMID: 30221362]
  53. Photosynth Res. 2019 Jun;140(3):289-299 [PMID: 30413987]
  54. Glob Chang Biol. 2017 Sep;23(9):3513-3524 [PMID: 27976452]
  55. Curr Biol. 2022 Sep 26;32(18):4057-4063.e3 [PMID: 35944542]
  56. J Plant Physiol. 2015 Sep 15;189:51-64 [PMID: 26513460]
  57. Curr Biol. 2022 Jun 20;32(12):R634-R639 [PMID: 35728544]
  58. Anal Chem. 2007 Oct 15;79(20):7611-27 [PMID: 17854156]
  59. Plant Cell Environ. 2014 Dec;37(12):2722-37 [PMID: 24716850]
  60. J Exp Bot. 2019 Sep 24;70(18):4807-4818 [PMID: 31056658]
  61. New Phytol. 2019 Jan;221(1):93-98 [PMID: 29987878]
  62. Molecules. 2020 Oct 11;25(20): [PMID: 33050573]
  63. Plant Physiol. 2007 Dec;145(4):1506-20 [PMID: 17932304]
  64. New Phytol. 2013 Feb;197(3):970-978 [PMID: 23206198]
  65. New Phytol. 2020 Jun;226(6):1550-1566 [PMID: 32064613]
  66. Plant Physiol. 2020 Aug;183(4):1809-1824 [PMID: 32513834]
  67. Proc Natl Acad Sci U S A. 2021 Mar 30;118(13): [PMID: 33771925]
  68. PLoS One. 2013 Aug 19;8(8):e71448 [PMID: 23977043]
  69. Plant Physiol Biochem. 2016 Dec;109:397-405 [PMID: 27814569]
  70. New Phytol. 2016 Nov;212(3):571-576 [PMID: 27483440]
  71. Sci Rep. 2019 Jan 24;9(1):659 [PMID: 30679731]
  72. New Phytol. 2019 Jul;223(1):22-32 [PMID: 30560995]
  73. New Phytol. 2017 Jul;215(1):85-96 [PMID: 28436561]
  74. Cells. 2022 Apr 12;11(8): [PMID: 35455982]
  75. Plants (Basel). 2022 Feb 14;11(4): [PMID: 35214851]

Grants

  1. FEDER-US-1381232/Andalusian Government and University of Seville
  2. PGC2018-098358-B-I00/Spanish Ministerio de Ciencia e Innovaci��n

MeSH Term

Dianthus
Temperature
Polyploidy
Water
Gene Expression

Chemicals

Water

Word Cloud

Created with Highcharts 10.0.0expressionstressphysiologicalgenewaterbroteri4��12��temperaturecytotyperesponseplantpolyploidsHowevergenomeepiphenotypetwoDianthus��CPP2C16ATHB7enhancedgasexchangeheatmethylationphotochemicalpolyploidyIncreasingevidencesupportsmajorroleabioticsuccessusuallythriveharshenvironmentsunderstandingecophysiologychallengingdueinteractionsdoublingnaturalselectioninvestigatedresponsesrelatedcytotypes-withdifferentduplicationsevolutionarytrajectories-toshortextremeevents42/289/5showedhigherstress-responsivegenesSWEET1AI5L3comparedploidiesgreatlyimpairedperformancealteredreducedcytosineexhibitedremarkabletolerancemaintainingstatusviagreaterintegrityprobablystoragedown-regulatingConverselyDsusceptiblethermaldespiteprioritizingconservationshowingsignsnon-stomatalphotosyntheticlimitationsirreversibledamagealsopresentedgene-specificpatternsup-regulatingfindingsprovideinsightsdivergentstrategiesresistanceresultinghighlightingwidespreadinfluencefunctionPhysiologypolyploidcytotypesCytosinephotosynthesisrelations

Similar Articles

Cited By (2)