Waking Up to the Issue! Research Inattention and Sex-Related Differences Warrant More Sleep Studies in Female Athletes.

Cody J Power, Jordan L Fox, Kirsty J Elliott-Sale, Amy M Bender, Vincent J Dalbo, Aaron T Scanlan
Author Information
  1. Cody J Power: School of Health, Medical and Applied Sciences, CQUniversity, Rockhampton, QLD, Australia. c.power@cqu.edu.au. ORCID
  2. Jordan L Fox: Rural Clinical School, The University of Queensland, Rockhampton, QLD, Australia.
  3. Kirsty J Elliott-Sale: Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, UK.
  4. Amy M Bender: Faculty of Kinesiology, University of Calgary, Calgary, Canada.
  5. Vincent J Dalbo: School of Health, Medical and Applied Sciences, CQUniversity, Rockhampton, QLD, Australia.
  6. Aaron T Scanlan: School of Health, Medical and Applied Sciences, CQUniversity, Rockhampton, QLD, Australia.

Abstract

Understanding sleep patterns and behaviors of athletes is essential for developing targeted sleep-based interventions for implementation in practice. However, more than double the number of sleep studies have examined male athletes compared with female athletes, making the current understanding of sleep patterns, behaviors, and interventions among athletes disproportionately indicative of men. Consequently, this review demonstrates the need for more female-specific sleep data among athlete populations due to research inattention and sex-related differences. Specifically, this review identifies variations in sleep patterns and behaviors between male and female athletes, as well as physiological and lifestyle factors that potentially affect sleep patterns and behaviors across the lifespan, specifically in female athletes. In this regard, evidence suggests some female athletes experience longer sleep durations and better objective sleep quality, but similar or worse subjective sleep quality compared with male athletes. Additionally, scheduling training in the morning or throughout the day may benefit sleep in some female athletes. Considering sleep disorders, women may be at greater risk for insomnia and restless legs syndrome compared with men, which may be attributed to pregnancy, as well as a higher prevalence of anxiety and depressive symptoms, iron deficiency without anemia, and use of psychotropic medication among women. Finally, the menstrual cycle, menstrual disorders, oral contraceptive use, and the postpartum period have been shown to exert detrimental effects on sleep patterns and behaviors and should theoretically be considered when monitoring and managing sleep in female athletes.

References

  1. Sport Australia. AusPlay survey 2021. https://www.clearinghouseforsport.gov.au . Accessed 18 Feb 2022.
  2. Statista. Number of athletes competing at the Tokyo 2020 Olympics in Japan as of July 2021, by gender. https://www.statista.com/statistics/1254529/japan-number-athletes-competing-tokyo-2020-olympics-by-gender/ . Accessed 18 Feb 2022.
  3. Statista. Number of NCAA student athletes in the United States in 2020, by gender. https://www.statista.com/statistics/1098761/student-athletes-by-gender/ . Accessed 23 Mar 2022.
  4. Sport Australia. AusPlay survey 2016. https://www.clearinghouseforsport.gov.au . Accessed 18 Feb 2022.
  5. National Collegiate Athletics Association. Number of NCAA college athletes climbs again. https://www.ncaa.org/news/2015/10/29/number-of-ncaa-college-athletes-climbs-again.aspx . Accessed 23 Mar 2022.
  6. Statista. Share of female participants in the Olympic Summer Games from 1900 to 2020. https://www.statista.com/statistics/531146/women-participants-in-olympic-summer-games/ . Accessed 18 Feb 2022.
  7. Forsyth J, Roberts CM, editors. The exercising female: science and its application. 1st ed. London: Routledge; 2018.
  8. Miles KH, Clark B, Fowler PM, Miller J, Pumpa KL. Sleep practices implemented by team sport coaches and sports science support staff: a potential avenue to improve athlete sleep? J Sci Med Sport. 2019;22(7):748–52. https://doi.org/10.1016/j.jsams.2019.01.008 . [DOI: 10.1016/j.jsams.2019.01.008]
  9. Juliff LE, Halson SL, Hebert JJ, Forsyth PL, Peiffer JJ. Longer sleep durations are positively associated with finishing place during a national multiday netball competition. J Strength Cond Res. 2018;32(1):189–94. https://doi.org/10.1519/jsc.0000000000001793 . [DOI: 10.1519/jsc.0000000000001793]
  10. Hamlin MJ, Deuchrass RW, Olsen PD, Choukri MA, Marshall HC, Lizamore CA, et al. The effect of sleep quality and quantity on athlete’s health and perceived training quality. Front Sports Act Living. 2021;3: 705650. https://doi.org/10.3389/fspor.2021.705650 . [DOI: 10.3389/fspor.2021.705650]
  11. Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O, DonCarlos L, et al. National Sleep Foundation’s sleep time duration recommendations: methodology and results summary. Sleep Health. 2015;1(1):40–3. https://doi.org/10.1016/j.sleh.2014.12.010 . [DOI: 10.1016/j.sleh.2014.12.010]
  12. Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354(9188):1435–9. https://doi.org/10.1016/s0140-6736(99)01376-8 . [DOI: 10.1016/s0140-6736(99)01376-8]
  13. Mejri M, Hammouda O, Chaouachi A, Zouaoui K, Rayana MB, Souissi N. Effects of two types of partial sleep deprivation on hematological responses during intermittent exercise: a pilot study. Sci Sports. 2014;29(5):266–74. [DOI: 10.1016/j.scispo.2014.05.001]
  14. Maquet P. The role of sleep in learning and memory. Science. 2001;294(5544):1048–52. [DOI: 10.1126/science.1062856]
  15. Watson A, Brickson S. Impaired sleep mediates the negative effects of training load on subjective well-being in female youth athletes. Sports Health. 2018;10(3):244–9. [DOI: 10.1177/1941738118757422]
  16. Andrade A, Bevilacqua GG, Coimbra DR, Pereira FS, Brandt R. Sleep quality, mood and performance: a study of elite Brazilian volleyball athletes. J Sports Sci Med. 2016;15(4):601–5. [PMID: 27928205]
  17. Sufrinko A, Johnson EW, Henry LC. The influence of sleep duration and sleep-related symptoms on baseline neurocognitive performance among male and female high school athletes. Neuropsychology. 2016;30(4):484–91. https://doi.org/10.1037/neu0000250 . [DOI: 10.1037/neu0000250]
  18. Hajsalem M, Chtourou H, Aloui A, Hammouda O, Souissi N. Effects of partial sleep deprivation at the end of the night on anaerobic performances in judokas. Biol Rhythm Res. 2013;44(5):815–21. https://doi.org/10.1080/09291016.2012.756282 . [DOI: 10.1080/09291016.2012.756282]
  19. Mougin F, Simon-Rigaud ML, Davenne D, Renaud A, Garnier A, Kantelip JP, et al. Effects of sleep disturbances on subsequent physical performance. Eur J Appl Physiol Occup Physiol. 1991;63(2):77–82. https://doi.org/10.1007/bf00235173 . [DOI: 10.1007/bf00235173]
  20. Vlahoyiannis A, Aphamis G, Bogdanis GC, Sakkas GK, Andreou E, Giannaki CD. Deconstructing athletes’ sleep: a systematic review of the influence of age, sex, athletic expertise, sport type, and season on sleep characteristics. J Sport Health Sci. 2021;10(4):387–402. https://doi.org/10.1016/j.jshs.2020.03.006 . [DOI: 10.1016/j.jshs.2020.03.006]
  21. Roberts SSH, Teo W-P, Warmington SA. Effects of training and competition on the sleep of elite athletes: a systematic review and meta-analysis. Br J Sports Med. 2019;53(8):513–22. https://doi.org/10.1136/bjsports-2018-099322 . [DOI: 10.1136/bjsports-2018-099322]
  22. Gratwicke M, Miles KH, Pyne DB, Pumpa KL, Clark B. Nutritional interventions to improve sleep in team-sport athletes: a narrative review. Nutrients. 2021;13(5):1586. https://doi.org/10.3390/nu13051586 . [DOI: 10.3390/nu13051586]
  23. Bonnar D, Bartel K, Kakoschke N, Lang C. Sleep interventions designed to improve athletic performance and recovery: a systematic review of current approaches. Sports Med. 2018;48(3):683–703. https://doi.org/10.1007/s40279-017-0832-x . [DOI: 10.1007/s40279-017-0832-x]
  24. Duffy JF, Cain SW, Chang AM, Phillips AJK, Munch MY, Gronfier C, et al. Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc Natl Acad Sci. 2011;108(S3):15602–8. https://doi.org/10.1073/pnas.1010666108 . [DOI: 10.1073/pnas.1010666108]
  25. Cain SW, Dennison CF, Zeitzer JM, Guzik AM, Khalsa SBS, Santhi N, et al. Sex differences in phase angle of entrainment and melatonin amplitude in humans. J Biol Rhythms. 2010;25(4):288–96. https://doi.org/10.1177/0748730410374943 . [DOI: 10.1177/0748730410374943]
  26. Johnson EO, Roth T, Schultz L, Breslau N. Epidemiology of DSM-IV insomnia in adolescence: lifetime prevalence, chronicity, and an emergent gender difference. Pediatrics. 2006;117(2):247–56. https://doi.org/10.1542/peds.2004-2629 . [DOI: 10.1542/peds.2004-2629]
  27. Bezerra AG, Andersen ML, Pires GN, Banzoli CV, Polesel DN, Tufik S, et al. Hormonal contraceptive use and subjective sleep reports in women: an online survey. J Sleep Res. 2020;29(6): e12983. https://doi.org/10.1111/jsr.12983 . [DOI: 10.1111/jsr.12983]
  28. Guida M, Rega A, Vivone I, Saccone G, Sarno L, Di Carlo C, et al. Variations in sleep associated with different types of hormonal contraceptives. Gynecol Endocrinol. 2020;36(2):166–70. https://doi.org/10.1080/09513590.2019.1640204 . [DOI: 10.1080/09513590.2019.1640204]
  29. Insana SP, Montgomery-Downs HE. Sleep and sleepiness among first-time postpartum parents: a field- and laboratory-based multimethod assessment. Dev Psychobiol. 2013;55(4):361–72. https://doi.org/10.1002/dev.21040 . [DOI: 10.1002/dev.21040]
  30. Beersma DGM, Gordijn MCM. Circadian control of the sleep–wake cycle. Physiol Behav. 2007;90(2–3):190–5. https://doi.org/10.1016/j.physbeh.2006.09.010 . [DOI: 10.1016/j.physbeh.2006.09.010]
  31. Carskadon MA, Dement WC. Normal human sleep: an overview. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. 5th ed. St Louis: Elsevier Saunders; 2005.
  32. Frank MG, Benington JH. The role of sleep in memory consolidation and brain plasticity: dream or reality? Neuroscientist. 2006;12(6):477–88. https://doi.org/10.1177/1073858406293552 . [DOI: 10.1177/1073858406293552]
  33. Van Cauter E, Plat L, Copinschi G. Interrelations between sleep and the somatotropic axis. Sleep. 1998;21(6):553–66. [PMID: 9779515]
  34. Ryan T, Mlynczak S, Erickson T, Man SP, Man GC. Oxygen consumption during sleep: influence of sleep stage and time of night. Sleep. 1989;12(3):201–10. [PMID: 2740691]
  35. Tononi G, Cirelli C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron. 2014;81(1):12–34. https://doi.org/10.1016/j.neuron.2013.12.025 . [DOI: 10.1016/j.neuron.2013.12.025]
  36. Vandekerckhove M, Wang Y-L. Emotion, emotion regulation and sleep: an intimate relationship. AIMS Neurosci. 2017;5(1):1–17. https://doi.org/10.3934/Neuroscience.2018.1.1 . [DOI: 10.3934/Neuroscience.2018.1.1]
  37. Patel AK, Reddy V, Araujo JF. Physiology, sleep stages. StatPearls [Internet]. 2021.
  38. Hrozanova M, Klöckner CA, Sandbakk Ø, Pallesen S, Moen F. Sex differences in sleep and influence of the menstrual cycle on women’s sleep in junior endurance athletes. PLoS ONE. 2021;16(6): e0253376. https://doi.org/10.1371/journal.pone.0253376 . [DOI: 10.1371/journal.pone.0253376]
  39. Carter JR, Gervais BM, Adomeit JL, Greenlund IM. Subjective and objective sleep differ in male and female collegiate athletes. Sleep Health. 2020;6(5):623–8. https://doi.org/10.1016/j.sleh.2020.01.016 . [DOI: 10.1016/j.sleh.2020.01.016]
  40. Silva A, Narciso FV, Rosa JP, Rodrigues DF, Cruz AÂDS, Tufik S, et al. Gender differences in sleep patterns and sleep complaints of elite athletes. Sleep Sci. 2019;12(4):242–8. https://doi.org/10.5935/1984-0063.20190084 . [DOI: 10.5935/1984-0063.20190084]
  41. Sargent C, Lastella M, Halson SL, Roach GD. How much sleep does an elite athlete need? Int J Sports Physiol Perform. 2021. https://doi.org/10.1123/ijspp.2020-0896 . [DOI: 10.1123/ijspp.2020-0896]
  42. Halson S, Johnston R, Appaneal R, Rogers M, Toohey L, Drew M, et al. Sleep quality in elite athletes: normative values, reliability and understanding contributors to poor sleep. Sports Med. 2022;52(2):417–26. https://doi.org/10.1007/s40279-021-01555-1 . [DOI: 10.1007/s40279-021-01555-1]
  43. Koikawa N, Shimada S, Suda S, Murata A, Kasai T. Sex differences in subjective sleep quality, sleepiness, and health-related quality of life among collegiate soccer players. Sleep Biol Rhythms. 2016;14(4):377–86. https://doi.org/10.1007/s41105-016-0068-4 . [DOI: 10.1007/s41105-016-0068-4]
  44. Hoshikawa M, Uchida S, Hirano Y. A subjective assessment of the prevalence and factors associated with poor sleep quality amongst elite Japanese athletes. Sports Med Open. 2018. https://doi.org/10.1186/s40798-018-0122-7 . [DOI: 10.1186/s40798-018-0122-7]
  45. Mantua J, Simonelli G. Sleep duration and cognition: is there an ideal amount? Sleep. 2019. https://doi.org/10.1093/sleep/zsz010 . [DOI: 10.1093/sleep/zsz010]
  46. Brand S, Lemola S, Holsboer-Trachsler E, Grob A, Kalak N. Sleep duration and subjective psychological well-being in adolescence: a longitudinal study in Switzerland and Norway. Neuropsychiatr Dis Treat. 2014;3(10):1199–207. https://doi.org/10.2147/ndt.s62533 . [DOI: 10.2147/ndt.s62533]
  47. Paulauskas H, Kreivyte R, Scanlan A, Moreira A, Siupsinskas L, Conte D. Monitoring workload in elite female basketball players during the in-season phase: weekly fluctuations and effect of playing time. Int J Sports Physiol Perform. 2019;14(7):941–8. https://doi.org/10.1123/ijspp.2018-0741 . [DOI: 10.1123/ijspp.2018-0741]
  48. Huyghe T, Scanlan A, Dalbo V, Calleja-González J. The negative influence of air travel on health and performance in the national basketball association: a narrative review. Sports. 2018;6(3):89. https://doi.org/10.3390/sports6030089 . [DOI: 10.3390/sports6030089]
  49. Fullagar HHK, Skorski S, Duffield R, Hammes D, Coutts AJ, Meyer T. Sleep and athletic performance: the effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise. Sports Med. 2015;45(2):161–86. https://doi.org/10.1007/s40279-014-0260-0 . [DOI: 10.1007/s40279-014-0260-0]
  50. Mah CD, Kezirian EJ, Marcello BM, Dement WC. Poor sleep quality and insufficient sleep of a collegiate student-athlete population. Sleep Health. 2018;4(3):251–7. https://doi.org/10.1016/j.sleh.2018.02.005 . [DOI: 10.1016/j.sleh.2018.02.005]
  51. Toften S, Pallesen S, Hrozanova M, Moen F, Grønli J. Validation of sleep stage classification using non-contact radar technology and machine learning (Somnofy). Sleep Med. 2020;75:54–61. https://doi.org/10.1016/j.sleep.2020.02.022 . [DOI: 10.1016/j.sleep.2020.02.022]
  52. Fullagar HHK, Duffield R, Skorski S, Coutts AJ, Julian R, Meyer T. Sleep and recovery in team sport: current sleep-related issues facing professional team-sport athletes. Int J Sports Physiol Perform. 2015;10(8):950–7. https://doi.org/10.1123/ijspp.2014-0565 . [DOI: 10.1123/ijspp.2014-0565]
  53. Byun JH, Kim KT, Moon HJ, Motamedi GK, Cho YW. The first night effect during polysomnography, and patients’ estimates of sleep quality. Psychiatry Res. 2019;274:27–9. https://doi.org/10.1016/j.psychres.2019.02.011 . [DOI: 10.1016/j.psychres.2019.02.011]
  54. Khullar A. The role of melatonin in the circadian rhythm sleep-wake cycle: a review of endogenous and exogenous melatonin. Psychiatr Times. 2012;29(7):26.
  55. Zisapel N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol. 2018;175(16):3190–9. https://doi.org/10.1111/bph.14116 . [DOI: 10.1111/bph.14116]
  56. Bailey M, Silver R. Sex differences in circadian timing systems: implications for disease. Front Neuroendocrinol. 2014;35(1):111–39. https://doi.org/10.1016/j.yfrne.2013.11.003 . [DOI: 10.1016/j.yfrne.2013.11.003]
  57. Arciero PJ, Ives SJ, Mohr AE, Robinson N, Escudero D, Robinson J, et al. Morning exercise reduces abdominal fat and blood pressure in women; evening exercise increases muscular performance in women and lowers blood pressure in men. Front Physiol. 2022;13: e893783. https://doi.org/10.3389/fphys.2022.893783 . [DOI: 10.3389/fphys.2022.893783]
  58. Reilly T, Edwards B. Altered sleep-wake cycles and physical performance in athletes. Physiol Behav. 2007;90(2–3):274–84. https://doi.org/10.1016/j.physbeh.2006.09.017 . [DOI: 10.1016/j.physbeh.2006.09.017]
  59. McLean BD, Strack D, Russell J, Coutts AJ. Quantifying physical demands in the National Basketball Association-Challenges around developing best-practice models for athlete care and performance. Int J Sports Physiol Perform. 2019;14(4):414–20. https://doi.org/10.1123/ijspp.2018-0384 . [DOI: 10.1123/ijspp.2018-0384]
  60. Calleja-Gonzalez J, Marques-Jimenez D, Jones M, Huyghe T, Navarro F, Delextrat A, et al. What are we doing wrong when athletes report higher levels of fatigue from traveling than from training or competition? Front Psychol. 2020;11:194. https://doi.org/10.3389/fpsyg.2020.00194 . [DOI: 10.3389/fpsyg.2020.00194]
  61. Hodge K, Smith W. Public expectation, pressure, and avoiding the choke: a case study from elite sport. Sport Psychol. 2014;28(4):375–89. https://doi.org/10.1123/tsp.2014-0005 . [DOI: 10.1123/tsp.2014-0005]
  62. Monma T, Ando A, Asanuma T, Yoshitake Y, Yoshida G, Miyazawa T, et al. Sleep disorder risk factors among student athletes. Sleep Med. 2018;44:76–81. https://doi.org/10.1016/j.sleep.2017.11.1130 . [DOI: 10.1016/j.sleep.2017.11.1130]
  63. Fernández MM, Brito CJ, Miarka B, Díaz-de-Durana AL. Anxiety and emotional intelligence: comparisons between combat sports, gender and levels using the trait meta-mood scale and the inventory of situations and anxiety response. Front Psychol. 2020;11:130. https://doi.org/10.3389/fpsyg.2020.00130 . [DOI: 10.3389/fpsyg.2020.00130]
  64. Fulda S. Gender differences in the prevalence of restless legs syndrome/Willis–Ekbom disease. Somnologie. 2013;17(4):246–51. https://doi.org/10.1007/s11818-013-0636-7 . [DOI: 10.1007/s11818-013-0636-7]
  65. Lin CM, Davidson TM, Ancoli-Israel S. Gender differences in obstructive sleep apnea and treatment implications. Sleep Med Rev. 2008;12(6):481–96. https://doi.org/10.1016/j.smrv.2007.11.003 . [DOI: 10.1016/j.smrv.2007.11.003]
  66. American Academy of Sleep Medicine. International classification of sleep disorders. 3rd ed. Darien: American Academy of Sleep Medicine; 2014.
  67. Harvey AG. A cognitive model of insomnia. Behav Res Ther. 2002;40(8):869–93. https://doi.org/10.1016/s0005-7967(01)00061-4 . [DOI: 10.1016/s0005-7967(01)00061-4]
  68. Kahn M, Sheppes G, Sadeh A. Sleep and emotions: bidirectional links and underlying mechanisms. Int J Psychophysiol. 2013;89(2):218–28. https://doi.org/10.1016/j.ijpsycho.2013.05.010 . [DOI: 10.1016/j.ijpsycho.2013.05.010]
  69. Zammit GK. Subjective ratings of the characteristics and sequelae of good and poor sleep in normals. J Clin Psychol. 1988;44(2):123–30. https://doi.org/10.1002/1097-4679(198803)44:2%3c123::aid-jclp2270440206%3e3.0.co;2-d . [DOI: 10.1002/1097-4679(198803)44]
  70. Gupta L, Morgan K, Gilchrist S. Does elite sport degrade sleep quality? A systematic review. Sports Med. 2017;47(7):1317–33. https://doi.org/10.1007/s40279-016-0650-6 . [DOI: 10.1007/s40279-016-0650-6]
  71. Schaal K, Tafflet M, Nassif H, Thibault V, Pichard C, Alcotte M, et al. Psychological balance in high level athletes: gender-based differences and sport-specific patterns. PLoS ONE. 2011;6(5): e19007. https://doi.org/10.1371/journal.pone.0019007 . [DOI: 10.1371/journal.pone.0019007]
  72. Walton CC, Rice S, Gao CX, Butterworth M, Clements M, Purcell R. Gender differences in mental health symptoms and risk factors in Australian elite athletes. BMJ Open Sport Exerc Med. 2021;7(1): e000984. https://doi.org/10.1136/bmjsem-2020-000984 . [DOI: 10.1136/bmjsem-2020-000984]
  73. Yang J, Peek-Asa C, Corlette JD, Cheng G, Foster DT, Albright J. Prevalence of and risk factors associated with symptoms of depression in competitive collegiate student athletes. Clin J Sport Med. 2007;17(6):481–7. https://doi.org/10.1097/JSM.0b013e31815aed6b . [DOI: 10.1097/JSM.0b013e31815aed6b]
  74. Jansson M, Linton SJ. The role of anxiety and depression in the development of insomnia: cross-sectional and prospective analyses. Psychol Health. 2006;21(3):383–97. [DOI: 10.1080/14768320500129015]
  75. Jansson-Fröjmark M, Lindblom K. A bidirectional relationship between anxiety and depression, and insomnia? A prospective study in the general population. J Psychosom Res. 2008;64(4):443–9. https://doi.org/10.1016/j.jpsychores.2007.10.016 . [DOI: 10.1016/j.jpsychores.2007.10.016]
  76. Johnson EO, Roth T, Breslau N. The association of insomnia with anxiety disorders and depression: exploration of the direction of risk. J Psychiatr Res. 2006;40(8):700–8. https://doi.org/10.1016/j.jpsychires.2006.07.008 . [DOI: 10.1016/j.jpsychires.2006.07.008]
  77. Altemus M, Sarvaiya N, Neill EC. Sex differences in anxiety and depression clinical perspectives. Front Neuroendocrinol. 2014;35(3):320–30. https://doi.org/10.1016/j.yfrne.2014.05.004 . [DOI: 10.1016/j.yfrne.2014.05.004]
  78. Allen RP, Picchietti DL, Garcia-Borreguero D, Ondo WG, Walters AS, Winkelman JW, et al. Restless Legs Syndrome/Willis–Ekbom disease diagnostic criteria: updated International Restless Legs Syndrome Study Group (IRLSSG) consensus criteria–history, rationale, description, and significance. Sleep Med. 2014;15(8):860–73. https://doi.org/10.1016/j.sleep.2014.03.025 . [DOI: 10.1016/j.sleep.2014.03.025]
  79. Manconi M, Ulfberg J, Berger K, Ghorayeb I, Wesström J, Fulda S, et al. When gender matters: restless legs syndrome. Report of the “RLS and woman” workshop endorsed by the European RLS Study Group. Sleep Med Rev. 2012;16(4):297–307. https://doi.org/10.1016/j.smrv.2011.08.006 . [DOI: 10.1016/j.smrv.2011.08.006]
  80. Earley CJ, Barker PB, Horská A, Allen RP. MRI-determined regional brain iron concentrations in early- and late-onset restless legs syndrome. Sleep Med. 2006;7(5):458–61. https://doi.org/10.1016/j.sleep.2005.11.009 . [DOI: 10.1016/j.sleep.2005.11.009]
  81. Allen RP, Barker PB, Wehrl FW, Song HK, Earley CJ. MRI measurement of brain iron in patients with restless legs syndrome. Neurology. 2001;56(2):263–5. https://doi.org/10.1212/wnl.56.2.263 . [DOI: 10.1212/wnl.56.2.263]
  82. The Royal College of Pathologists of Australasia. Ferritin. https://www.rcpa.edu.au/Manuals/RCPA-Manual/Pathology-Tests/F/Ferritin . Accessed 28 July 2022.
  83. Allen RP, Earley CJ. The role of iron in restless legs syndrome. Mov Disord. 2007;22(S18):440–8. https://doi.org/10.1002/mds.21607 . [DOI: 10.1002/mds.21607]
  84. Abuaisha M, Itani H, El Masri R, Antoun J. Prevalence of iron deficiency (ID) without anemia in the general population presenting to primary care clinics: a cross-sectional study. Postgrad Med. 2020;132(3):282–7. https://doi.org/10.1080/00325481.2020.1715701 . [DOI: 10.1080/00325481.2020.1715701]
  85. Hausken AM, Skurtveit S, Rosvold EO, Bramness JG, Furu K. Psychotropic drug use among persons with mental distress symptoms: a population-based study in Norway. Scand J Public Health. 2007;35(4):356–64. https://doi.org/10.1080/14034940601159161 . [DOI: 10.1080/14034940601159161]
  86. Patatanian E, Claborn MK. Drug-induced restless legs syndrome. Ann Pharmacother. 2018;52(7):662–72. https://doi.org/10.1177/1060028018760296 . [DOI: 10.1177/1060028018760296]
  87. Rottach KG, Schaner BM, Kirch MH, Zivotofsky AZ, Teufel LM, Gallwitz T, et al. Restless legs syndrome as side effect of second generation antidepressants. J Psychiatr Res. 2008;43(1):70–5. https://doi.org/10.1016/j.jpsychires.2008.02.006 . [DOI: 10.1016/j.jpsychires.2008.02.006]
  88. de Oliveira CJ, Gilles MB, Schaffer AL, Peiris D, Zoega H, Pearson S-A. Changes in antidepressant use in Australia: a nationwide analysis (2015–2021). Aust NZ J Psychiatry. 2023;57(1):49–57. https://doi.org/10.1177/00048674221079740 . [DOI: 10.1177/00048674221079740]
  89. Rowland T. Iron deficiency in athletes. Am J Lifestyle Med. 2012;6(4):319–27. https://doi.org/10.1177/1559827611431541 . [DOI: 10.1177/1559827611431541]
  90. Yardbarker. Female athletes who returned to action after giving birth. https://www.yardbarker.com/general_sports/articles/female_athletes_who_returned_to_action_after_giving_birth/s1__26716052#slide_1 . Accessed 31 Dec 2021.
  91. Esteves AM, Mello MTD, Benedito-Silva AA, Tufik S. Impact of aerobic physical exercise on restless legs syndrome. Sleep Sci. 2011;4(2):45–8.
  92. Aukerman MM, Aukerman D, Bayard M, Tudiver F, Thorp L, Bailey B. Exercise and restless legs syndrome: a randomized controlled trial. J Am Board Fam Med. 2006;19(5):487–93. https://doi.org/10.3122/jabfm.19.5.487 . [DOI: 10.3122/jabfm.19.5.487]
  93. Cederberg KLJ, Sikes EM, Mignot E. Perceptions of exercise and restless legs syndrome: results from a nationwide survey. J Sleep Res. 2023. https://doi.org/10.1111/jsr.13980 . [DOI: 10.1111/jsr.13980]
  94. Punjabi NM. The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc. 2008;5(2):136–43. https://doi.org/10.1513/pats.200709-155mg . [DOI: 10.1513/pats.200709-155mg]
  95. Amatoury J, Azarbarzin A, Younes M, Jordan AS, Wellman A, Eckert DJ. Arousal intensity is a distinct pathophysiological trait in obstructive sleep apnea. Sleep. 2016;39(12):2091–100. https://doi.org/10.5665/sleep.6304 . [DOI: 10.5665/sleep.6304]
  96. Narkiewicz K, Somers VK. Sympathetic nerve activity in obstructive sleep apnoea. Acta Physiol Scand. 2003;177(3):385–90. https://doi.org/10.1046/j.1365-201x.2003.01091.x . [DOI: 10.1046/j.1365-201x.2003.01091.x]
  97. Pham LV, Schwartz AR, Jun JC. Oxyhemoglobin saturation overshoot following obstructive breathing events mitigates sleep apnea-induced glucose elevations. Front Endocrinol. 2018;9:477. https://doi.org/10.3389/fendo.2018.00477 . [DOI: 10.3389/fendo.2018.00477]
  98. Dopp JM, Reichmuth KJ, Morgan BJ. Obstructive sleep apnea and hypertension: mechanisms, evaluation, and management. Curr Hypertens Rep. 2007;9(6):529–34. https://doi.org/10.1007/s11906-007-0095-2 . [DOI: 10.1007/s11906-007-0095-2]
  99. Young T. Risk factors for obstructive sleep apnea in adults. JAMA. 2004;291(16):2013–6. https://doi.org/10.1001/jama.291.16.2013 . [DOI: 10.1001/jama.291.16.2013]
  100. Swinbourne R, Gill N, Vaile J, Smart D. Prevalence of poor sleep quality, sleepiness and obstructive sleep apnoea risk factors in athletes. Eur J Sport Sci. 2016;16(7):850–8. [DOI: 10.1080/17461391.2015.1120781]
  101. Senaratna CV, Perret JL, Lodge CJ, Lowe AJ, Campbell BE, Matheson MC, et al. Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev. 2017;34:70–81. https://doi.org/10.1016/j.smrv.2016.07.002 . [DOI: 10.1016/j.smrv.2016.07.002]
  102. Reddy EV, Kadhiravan T, Mishra HK, Sreenivas V, Handa KK, Sinha S, et al. Prevalence and risk factors of obstructive sleep apnea among middle-aged urban Indians: a community-based study. Sleep Med. 2009;10(8):913–8. https://doi.org/10.1016/j.sleep.2008.08.011 . [DOI: 10.1016/j.sleep.2008.08.011]
  103. Redline S, Sotres-Alvarez D, Loredo J, Hall M, Patel SR, Ramos A, et al. Sleep-disordered breathing in Hispanic/Latino individuals of diverse backgrounds. The Hispanic Community Health Study/Study of Latinos. Am J Respir Crit Care Med. 2014;189(3):335–44. https://doi.org/10.1164/rccm.201309-1735OC . [DOI: 10.1164/rccm.201309-1735OC]
  104. Barsh LI. The origin of pharyngeal obstruction during sleep. Sleep Breath. 1999;3(1):17–21. https://doi.org/10.1007/s11325-999-0017-4 . [DOI: 10.1007/s11325-999-0017-4]
  105. Netzer NC, Eliasson AH, Strohl KP. Women with sleep apnea have lower levels of sex hormones. Sleep Breath. 2003;7(1):25–9. https://doi.org/10.1007/s11325-003-0025-8 . [DOI: 10.1007/s11325-003-0025-8]
  106. Jehan S, Auguste E, Zizi F, Pandi-Perumal SR, Gupta R, Attarian H, et al. Obstructive sleep apnea: women’s perspective. J Sleep Med Disord. 2016;3(6):1064. [PMID: 28239685]
  107. Sigurðardóttir ES, Gislason T, Benediktsdottir B, Hustad S, Dadvand P, Demoly P, et al. Female sex hormones and symptoms of obstructive sleep apnea in European women of a population-based cohort. PLoS ONE. 2022;17(6): e0269569. https://doi.org/10.1371/journal.pone.0269569 . [DOI: 10.1371/journal.pone.0269569]
  108. Hackney AC, editor. Sex hormones, exercise and women: scientific and clinical aspects. Cham: Springer; 2017.
  109. ACOG Committee Opinion No. 760. Dysmenorrhea and endometriosis in the adolescent. Obstet Gynecol. 2018;132(6):e249–58. https://doi.org/10.1097/aog.0000000000002978 . [DOI: 10.1097/aog.0000000000002978]
  110. Chrousos GP, Torpy DJ, Gold PW. Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: clinical implications. Ann Intern Med. 1998;129(3):229–40. https://doi.org/10.7326/0003-4819-129-3-199808010-00012 . [DOI: 10.7326/0003-4819-129-3-199808010-00012]
  111. Ansdell P, Brownstein CG, Škarabot J, Hicks KM, Simoes DCM, Thomas K, et al. Menstrual cycle-associated modulations in neuromuscular function and fatigability of the knee extensors in eumenorrheic women. J Appl Physiol. 2019;126(6):1701–12. https://doi.org/10.1152/japplphysiol.01041.2018 . [DOI: 10.1152/japplphysiol.01041.2018]
  112. Carmichael MA, Thomson RL, Moran LJ, Dunstan JR, Nelson MJ, Mathai ML, et al. A pilot study on the impact of menstrual cycle phase on elite Australian football athletes. Int J Environ Res Public Health. 2021;18(18):9591. https://doi.org/10.3390/ijerph18189591 . [DOI: 10.3390/ijerph18189591]
  113. Martin D, Sale C, Cooper SB, Elliott-Sale KJ. Period prevalence and perceived side effects of hormonal contraceptive use and the menstrual cycle in elite athletes. Int J Sports Physiol Perform. 2018;13(7):926–32. https://doi.org/10.1123/ijspp.2017-0330 . [DOI: 10.1123/ijspp.2017-0330]
  114. Momma R, Nakata Y, Sawai A, Takeda M, Natsui H, Mukai N, et al. Comparisons of the prevalence, severity, and risk factors of dysmenorrhea between Japanese female athletes and non-athletes in universities. Int J Environ Res Public Health. 2021;19(1):52. https://doi.org/10.3390/ijerph19010052 . [DOI: 10.3390/ijerph19010052]
  115. Czajkowska M, Drosdzol-Cop A, Gałązka I, Naworska B, Skrzypulec-Plinta V. Menstrual cycle and the prevalence of premenstrual syndrome/premenstrual dysphoric disorder in adolescent athletes. J Pediatr Adolesc Gynecol. 2015;28(6):492–8. https://doi.org/10.1016/j.jpag.2015.02.113 . [DOI: 10.1016/j.jpag.2015.02.113]
  116. Baker FC, Driver HS, Rogers GG, Paiker J, Mitchell D. High nocturnal body temperatures and disturbed sleep in women with primary dysmenorrhea. Am J Physiol. 1999;277(6):1013–21. https://doi.org/10.1152/ajpendo.1999.277.6.E1013 . [DOI: 10.1152/ajpendo.1999.277.6.E1013]
  117. Baker FC, Sassoon SA, Kahan T, Palaniappan L, Nicholas CL, Trinder J, et al. Perceived poor sleep quality in the absence of polysomnographic sleep disturbance in women with severe premenstrual syndrome. J Sleep Res. 2012;21(5):535–45. https://doi.org/10.1111/j.1365-2869.2012.01007.x . [DOI: 10.1111/j.1365-2869.2012.01007.x]
  118. Office of the Assistant Secretary for Health. Birth control methods. https://www.womenshealth.gov/a-z-topics/birth-control-methods . Accessed 24 Dec 2021.
  119. Elliott-Sale KJ, McNulty KL, Ansdell P, Goodall S, Hicks KM, Thomas K, et al. The effects of oral contraceptives on exercise performance in women: a systematic review and meta-analysis. Sports Med. 2020;50(10):1785–812. https://doi.org/10.1007/s40279-020-01317-5 . [DOI: 10.1007/s40279-020-01317-5]
  120. Bennell K, White S, Crossley K. The oral contraceptive pill: a revolution for sportswomen? Br J Sports Med. 1999;33(4):231–8. https://doi.org/10.1136/bjsm.33.4.231 . [DOI: 10.1136/bjsm.33.4.231]
  121. Schaumberg MA, Emmerton LM, Jenkins DG, Burton NW, Janse de Jonge XAK, Skinner TL. Use of oral contraceptives to manipulate menstruation in young, physically active women. Int J Sports Physiol Perform. 2018;13(1):82–7. https://doi.org/10.1123/ijspp.2016-0689 . [DOI: 10.1123/ijspp.2016-0689]
  122. Nolan D, Elliott-Sale KJ, Egan B. Prevalence of hormonal contraceptive use and reported side effects of the menstrual cycle and hormonal contraceptive use in powerlifting and rugby. Phys Sportsmed. 2022;6:1–6. https://doi.org/10.1080/00913847.2021.2024774 . [DOI: 10.1080/00913847.2021.2024774]
  123. Larsen B, Cox A, Colbey C, Drew M, McGuire H, Fazekas de St Groth B, et al. inflammation and oral contraceptive use in female athletes before the Rio olympic games. Front Physiol. 2020;11:497. https://doi.org/10.3389/fphys.2020.00497 . [DOI: 10.3389/fphys.2020.00497]
  124. Burdick RS, Hoffmann R, Armitage R. Short note: oral contraceptives and sleep in depressed and healthy women. Sleep. 2002;25(3):347–9. [PMID: 12003166]
  125. Baker F, Mitchell D, Driver H. Oral contraceptives alter sleep and raise body temperature in young women. Pflugers Arch. 2001;442(5):729–37. https://doi.org/10.1007/s004240100582 . [DOI: 10.1007/s004240100582]
  126. Sundgot-Borgen J, Sundgot-Borgen C, Myklebust G, Sølvberg N, Torstveit MK. Elite athletes get pregnant, have healthy babies and return to sport early postpartum. BMJ Open Sport Exerc Med. 2019;5(1): e000652. [DOI: 10.1136/bmjsem-2019-000652]
  127. Elmenshawy AR, Machin DR, Tanaka H. A rise in peak performance age in female athletes. Age. 2015;37(3):9795. https://doi.org/10.1007/s11357-015-9795-8 . [DOI: 10.1007/s11357-015-9795-8]
  128. ABC News. Australian-first study paves way for professional athletes to return to elite sport after having children. https://www.abc.net.au/news/2021-11-13/ais-launches-study-paving-way-for-mothers-returning-to-sport/100615432 . Accessed 31 Dec 2021.
  129. Union of European Football Association. UEFA Women's Championship League lays foundations for more sustainable future. https://www.uefa.com/insideuefa/mediaservices/mediareleases/news/0268-122415a0fc64-78d08826a35b-1000--uefa-women-s-champions-league-lays-foundations-for-more-sustain/ . Accessed 29 Dec 2021.
  130. Santiago JR, Nolledo MS, Kinzler W, Santiago TV. Sleep and sleep disorders in pregnancy. Ann Intern Med. 2001;134(5):396–408. https://doi.org/10.7326/0003-4819-134-5-200103060-00012 . [DOI: 10.7326/0003-4819-134-5-200103060-00012]
  131. Insana SP, Garfield CF, Montgomery-Downs HE. A mixed-method examination of maternal and paternal nocturnal caregiving. J Pediatr Health Care. 2014;28(4):313–21. https://doi.org/10.1016/j.pedhc.2013.07.016 . [DOI: 10.1016/j.pedhc.2013.07.016]
  132. Said S, Johansson ED, Gemzell C. Serum oestrogens and progesterone after normal delivery. J Obstet Gynaecol Br Commonw. 1973;80(6):542–5. https://doi.org/10.1111/j.1471-0528.1973.tb15977.x . [DOI: 10.1111/j.1471-0528.1973.tb15977.x]
  133. Saaresranta T, Anttalainen U, Polo O. Sleep disordered breathing: is it different for females? ERJ Open Res. 2015;1(2):00063–2015. https://doi.org/10.1183/23120541.00063-2015 . [DOI: 10.1183/23120541.00063-2015]
  134. Kloss JD, Perlis ML, Zamzow JA, Culnan EJ, Gracia CR. Sleep, sleep disturbance, and fertility in women. Sleep Med Rev. 2015;22:78–87. https://doi.org/10.1016/j.smrv.2014.10.005 . [DOI: 10.1016/j.smrv.2014.10.005]
  135. Vitale KC, Owens R, Hopkins SR, Malhotra A. Sleep hygiene for optimizing recovery in athletes: review and recommendations. Int J Sports Med. 2019;40(8):535–43. https://doi.org/10.1055/a-0905-3103 . [DOI: 10.1055/a-0905-3103]
  136. O’Donnell S, Driller MW. Sleep-hygiene education improves sleep indices in elite female athletes. Int J Exerc Sci. 2017;10(4):522–30. [PMID: 28674597]
  137. Walsh NP, Halson SL, Sargent C, Roach GD, Nédélec M, Gupta L, et al. Sleep and the athlete: narrative review and 2021 expert consensus recommendations. Br J Sports Med. 2021;55(7):356–68. https://doi.org/10.1136/bjsports-2020-102025 . [DOI: 10.1136/bjsports-2020-102025]
  138. Linton SJ, Kecklund G, Franklin KA, Leissner LC, Sivertsen B, Lindberg E, et al. The effect of the work environment on future sleep disturbances: a systematic review. Sleep Med Rev. 2015;23:10–9. https://doi.org/10.1016/j.smrv.2014.10.010 . [DOI: 10.1016/j.smrv.2014.10.010]
  139. Kosmadopoulos A, Sargent C, Darwent D, Zhou X, Roach GD. Alternatives to polysomnography (PSG): a validation of wrist actigraphy and a partial-PSG system. Behav Res Methods. 2014;46(4):1032–41. https://doi.org/10.3758/s13428-013-0438-7 . [DOI: 10.3758/s13428-013-0438-7]
  140. Marino M, Li Y, Rueschman MN, Winkelman JW, Ellenbogen JM, Solet JM, et al. Measuring sleep: accuracy, sensitivity, and specificity of wrist actigraphy compared to polysomnography. Sleep. 2013;36(11):1747–55. https://doi.org/10.5665/sleep.3142 . [DOI: 10.5665/sleep.3142]
  141. Sargent C, Lastella M, Halson SL, Roach GD. The validity of activity monitors for measuring sleep in elite athletes. J Sci Med Sport. 2016;19(10):848–53. https://doi.org/10.1016/j.jsams.2015.12.007 . [DOI: 10.1016/j.jsams.2015.12.007]
  142. Mollayeva T, Thurairajah P, Burton K, Mollayeva S, Shapiro CM, Colantonio A. The Pittsburgh Sleep Quality Index as a screening tool for sleep dysfunction in clinical and non-clinical samples: a systematic review and meta-analysis. Sleep Med Rev. 2016;25:52–73. https://doi.org/10.1016/j.smrv.2015.01.009 . [DOI: 10.1016/j.smrv.2015.01.009]
  143. Demirel H. Sleep quality differs between athletes and non-athletes. Clin Invest Med. 2016;39:184–6. https://doi.org/10.25011/cim.v39i6.27525 . [DOI: 10.25011/cim.v39i6.27525]
  144. Jaiswal S, Shashikala KT. A comparative study of sleep quality in athletes & non athletes. Int J Physiol. 2020;8(2):162–6. https://doi.org/10.37506/ijop.v8i2.1268 . [DOI: 10.37506/ijop.v8i2.1268]
  145. Lastella M, Roach GD, Halson SL, Sargent C. The chronotype of elite athletes. J Hum Kinet. 2016;54(1):219–25. [DOI: 10.1515/hukin-2016-0049]
  146. Bender AM, Van Dongen HP, Samuels CH. Sleep quality and chronotype differences between elite athletes and non-athlete controls. Clocks & Sleep. 2018;1(1):3–12. [DOI: 10.3390/clockssleep1010002]
  147. Lim S-T, Kim D-Y, Kwon H-T, Lee E. Sleep quality and athletic performance according to chronotype. BMC Sports Sci Med Rehabil. 2021;13(1):2. https://doi.org/10.1186/s13102-020-00228-2 . [DOI: 10.1186/s13102-020-00228-2]
  148. Kissow J, Jacobsen KJ, Gunnarsson TP, Jessen S, Hostrup M. Effects of follicular and luteal phase-based menstrual cycle resistance training on muscle strength and mass. Sports Med. 2022;52(12):2813–9. https://doi.org/10.1007/s40279-022-01679-y . [DOI: 10.1007/s40279-022-01679-y]
  149. McCall C, McCall WV. Objective vs. subjective measurements of sleep in depressed insomniacs: first night effect or reverse first night effect? J Clin Sleep Med. 2012;8(1):59–65. https://doi.org/10.5664/jcsm.1664 . [DOI: 10.5664/jcsm.1664]
  150. Tamaki M, Nittono H, Hayashi M, Hori T. Examination of the first-night effect during the sleep-onset period. Sleep. 2005;28(2):195–202. https://doi.org/10.1093/sleep/28.2.195 . [DOI: 10.1093/sleep/28.2.195]
  151. Fuller PM, Gooley JJ, Saper CB. Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback. J Biol Rhythms. 2006;21(6):482–93. [DOI: 10.1177/0748730406294627]
  152. Merriam-Webster. Melatonin. https://www.merriam-webster.com/dictionary/melatonin . Accessed 17 June 2022.
  153. Encylcopedia. Core body temperature. https://www.encyclopedia.com/sports/sports-fitness-recreation-and-leisure-magazines/core-body-temperature . Accessed 17 June 2022.
  154. Wright KP, Hughes RJ, Kronauer RE, Dijk D-J, Czeisler CA. Intrinsic near-24-h pacemaker period determines limits of circadian entrainment to a weak synchronizer in humans. Proc Natl Acad Sci. 2001;98(24):14027–32. https://doi.org/10.1073/pnas.201530198 . [DOI: 10.1073/pnas.201530198]
  155. Krisanits B, Randise JF, Burton CE, Findlay VJ, Turner DP. Chapter Three—Pubertal mammary development as a “susceptibility window” for breast cancer disparity. In: Ford ME, Esnaola NF, Salley JD, editors. Advances in cancer research. New York: Academic Press; 2020. p. 57–82.
  156. Romano M, Cacciatore A, Giordano R, La Rosa B. Postpartum period: three distinct but continuous phases. J Prenat Med. 2010;4(2):22–5. [PMID: 22439056]
  157. Wilkinson K, Shapiro C. Development and validation of the Nonrestorative Sleep Scale (NRSS). J Clin Sleep Med. 2013;9(9):929–37. https://doi.org/10.5664/jcsm.2996 . [DOI: 10.5664/jcsm.2996]
  158. McKenna KA, Fogleman CD. Dysmenorrhea. Am Fam Physician. 2021;104(2):164–70. [PMID: 34383437]
  159. American College of Obstetricians and Gynecologists. Amenorrhea: absence of periods. https://www.acog.org/womens-health/faqs/amenorrhea-absence-of-periods . Accessed 17 June 2022.
  160. Apgar BS, Kaufman AH, George-Nwogu U, Kittendorf AL. Treatment of menorrhagia. Am Fam Physician. 2007;75(12):1813–9. [PMID: 17619523]
  161. Randler C, Engelke J. Gender differences in chronotype diminish with age: a meta-analysis based on morningness/chronotype questionnaires. Chronobiol Int. 2019;36(7):888–905. https://doi.org/10.1080/07420528.2019.1585867 . [DOI: 10.1080/07420528.2019.1585867]
  162. Adan A, Natale V. Gender differences in morningness–eveningness preference. Chronobiol Int. 2002;19(4):709–20. https://doi.org/10.1081/cbi-120005390 . [DOI: 10.1081/cbi-120005390]

MeSH Term

Pregnancy
Humans
Male
Female
Sleep
Athletes
Sleep Initiation and Maintenance Disorders
Sleep Wake Disorders
Menstrual Cycle

Word Cloud

Created with Highcharts 10.0.0sleepathletesfemalepatternsbehaviorsmalecomparedamongmayinterventionsmenreviewwellqualitydisorderswomenusemenstrualUnderstandingessentialdevelopingtargetedsleep-basedimplementationpracticeHoweverdoublenumberstudiesexaminedmakingcurrentunderstandingdisproportionatelyindicativeConsequentlydemonstratesneedfemale-specificdataathletepopulationsdueresearchinattentionsex-relateddifferencesSpecificallyidentifiesvariationsphysiologicallifestylefactorspotentiallyaffectacrosslifespanspecificallyregardevidencesuggestsexperiencelongerdurationsbetterobjectivesimilarworsesubjectiveAdditionallyschedulingtrainingmorningthroughoutdaybenefitConsideringgreaterriskinsomniarestlesslegssyndromeattributedpregnancyhigherprevalenceanxietydepressivesymptomsirondeficiencywithoutanemiapsychotropicmedicationFinallycycleoralcontraceptivepostpartumperiodshownexertdetrimentaleffectstheoreticallyconsideredmonitoringmanagingWakingIssue!ResearchInattentionSex-RelatedDifferencesWarrantSleepStudiesFemaleAthletes

Similar Articles

Cited By