Alveolar type I cells can give rise to KRAS-induced lung adenocarcinoma.

Minxiao Yang, Hua Shen, Per Flodby, Michael D Koss, Rania Bassiouni, Yixin Liu, Tea Jashashvili, Aaron Neely, Ezuka Ogbolu, Jonathan Castillo, Theresa Ryan Stueve, Daniel J Mullen, Amy L Ryan, John Carpten, Alessandra Castaldi, W Dean Wallace, Beiyun Zhou, Zea Borok, Crystal N Marconett
Author Information
  1. Minxiao Yang: Department of Translational Genomics, University of Southern California, Los Angeles, CA 90089, USA; Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA 90089, USA.
  2. Hua Shen: Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
  3. Per Flodby: Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
  4. Michael D Koss: Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
  5. Rania Bassiouni: Department of Translational Genomics, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
  6. Yixin Liu: Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA 90089, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
  7. Tea Jashashvili: Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
  8. Aaron Neely: Department of Translational Genomics, University of Southern California, Los Angeles, CA 90089, USA; Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA 90089, USA.
  9. Ezuka Ogbolu: Department of Translational Genomics, University of Southern California, Los Angeles, CA 90089, USA.
  10. Jonathan Castillo: Department of Translational Genomics, University of Southern California, Los Angeles, CA 90089, USA; Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA 90089, USA.
  11. Theresa Ryan Stueve: Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
  12. Daniel J Mullen: Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
  13. Amy L Ryan: Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa, IA 52242, USA.
  14. John Carpten: Department of Translational Genomics, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
  15. Alessandra Castaldi: Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
  16. W Dean Wallace: Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
  17. Beiyun Zhou: Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA 90089, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
  18. Zea Borok: Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
  19. Crystal N Marconett: Department of Translational Genomics, University of Southern California, Los Angeles, CA 90089, USA; Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA 90089, USA. Electronic address: crystal.marconett@med.usc.edu.

Abstract

Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer and presents clinically with a high degree of biological heterogeneity and distinct clinical outcomes. The current paradigm of LUAD etiology posits alveolar epithelial type II (AT2) cells as the primary cell of origin, while the role of AT1 cells in LUAD oncogenesis remains unknown. Here, we examine oncogenic transformation in mouse Gram-domain containing 2 (Gramd2) AT1 cells via oncogenic KRAS. Activation of KRAS in AT1 cells induces multifocal LUAD, primarily of papillary histology. Furthermore, KRT8 intermediate cell states were observed in both AT2- and AT1-derived LUAD, but SCGB3A2, another intermediate cell marker, was primarily associated with AT1 cells, suggesting different mechanisms of tumor evolution. Collectively, our study reveals that Gramd2 AT1 cells can serve as a cell of origin for LUAD and suggests that distinct subtypes of LUAD based on cell of origin be considered in the development of therapeutics.

Keywords

References

  1. PLoS One. 2012;7(9):e46076 [PMID: 23049940]
  2. J Clin Invest. 2018 Mar 1;128(3):970-984 [PMID: 29400695]
  3. Cell. 2005 Jun 17;121(6):823-35 [PMID: 15960971]
  4. Nat Med. 2020 Feb;26(2):259-269 [PMID: 32042191]
  5. Mod Pathol. 2002 Oct;15(10):1058-67 [PMID: 12379752]
  6. Am J Respir Cell Mol Biol. 2016 Sep;55(3):395-406 [PMID: 27064541]
  7. Nature. 2023 Jul;619(7971):860-867 [PMID: 37468622]
  8. Methods Mol Biol. 2009;563:123-40 [PMID: 19597783]
  9. PLoS Genet. 2013 Jun;9(6):e1003513 [PMID: 23818859]
  10. Sci Adv. 2020 Jul 08;6(28):eaba1983 [PMID: 32832599]
  11. Nat Commun. 2021 Nov 11;12(1):6500 [PMID: 34764257]
  12. J Thorac Dis. 2014 Oct;6(Suppl 5):S489-501 [PMID: 25349701]
  13. Cancer Biomark. 2021;32(4):531-539 [PMID: 34275895]
  14. Stem Cell Reports. 2018 May 8;10(5):1579-1595 [PMID: 29657097]
  15. Nat Commun. 2013;4:2612 [PMID: 24113773]
  16. Am J Surg Pathol. 2013 Aug;37(8):1215-22 [PMID: 23681073]
  17. Front Oncol. 2021 Mar 24;11:642547 [PMID: 33842351]
  18. J Med Internet Res. 2021 Jul 26;23(7):e27633 [PMID: 34309564]
  19. Nature. 2020 Nov;587(7835):619-625 [PMID: 33208946]
  20. Am J Respir Cell Mol Biol. 2017 Mar;56(3):310-321 [PMID: 27749084]
  21. Protein Sci. 2022 Jan;31(1):8-22 [PMID: 34717010]
  22. Theranostics. 2022 May 20;12(9):4374-4385 [PMID: 35673577]
  23. Annu Rev Physiol. 1992;54:351-71 [PMID: 1562179]
  24. Proc Natl Acad Sci U S A. 2019 Oct 8;116(41):20545-20555 [PMID: 31548395]
  25. Genome Med. 2022 Jan 12;14(1):5 [PMID: 35016696]
  26. Nat Commun. 2020 Jul 16;11(1):3559 [PMID: 32678092]
  27. Ann Diagn Pathol. 2004 Oct;8(5):259-67 [PMID: 15494931]
  28. Proc Natl Acad Sci U S A. 2023 Jun 13;120(24):e2210113120 [PMID: 37279279]
  29. Int J Mol Sci. 2020 Apr 30;21(9): [PMID: 32366033]
  30. J Thorac Dis. 2017 Jul;9(7):2142-2158 [PMID: 28840016]
  31. PLoS One. 2013 Dec 18;8(12):e82241 [PMID: 24367507]
  32. Genome Biol. 2019 Dec 23;20(1):296 [PMID: 31870423]
  33. Annu Rev Physiol. 2003;65:669-95 [PMID: 12428023]
  34. Am J Respir Crit Care Med. 2015 Mar 1;191(5):504-13 [PMID: 25723823]
  35. Genes Dev. 2020 Aug 1;34(15-16):1017-1032 [PMID: 32747478]
  36. Am J Physiol Lung Cell Mol Physiol. 2016 Jan 15;310(2):L114-20 [PMID: 26545903]
  37. Int J Clin Exp Pathol. 2014 Oct 15;7(11):8039-45 [PMID: 25550848]
  38. Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):E1475-83 [PMID: 22123957]
  39. Nat Commun. 2015 Apr 13;6:6727 [PMID: 25865356]
  40. Int J Cancer. 2017 Oct 15;141(8):1589-1599 [PMID: 28653505]
  41. Front Physiol. 2021 Dec 08;12:755468 [PMID: 34955878]
  42. Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4910-5 [PMID: 22411819]
  43. Mol Oncol. 2013 Apr;7(2):165-77 [PMID: 23481268]
  44. Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4952-7 [PMID: 24586047]
  45. Cancer Res. 2022 Mar 15;82(6):1025-1037 [PMID: 35045987]
  46. J Thorac Oncol. 2011 Feb;6(2):244-85 [PMID: 21252716]
  47. Acta Anat (Basel). 1971;78(3):425-43 [PMID: 4995841]
  48. Biosci Rep. 2020 Jul 31;40(7): [PMID: 32519739]
  49. CA Cancer J Clin. 2023 Jan;73(1):17-48 [PMID: 36633525]
  50. Cell Mol Life Sci. 2018 May;75(9):1521-1540 [PMID: 29305615]
  51. Front Oncol. 2022 Jan 05;11:780655 [PMID: 35070984]
  52. Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):2407-2412 [PMID: 29463737]
  53. Comp Med. 2009 Jun;59(3):234-41 [PMID: 19619413]
  54. Am J Respir Crit Care Med. 2020 Jun 1;201(11):1443-1447 [PMID: 32073903]

Grants

  1. U54 CA233465/NCI NIH HHS
  2. R01 CA262258/NCI NIH HHS
  3. U54 CA233396/NCI NIH HHS
  4. P30 CA014089/NCI NIH HHS
  5. U54 CA233444/NCI NIH HHS
  6. R35 HL135747/NHLBI NIH HHS

MeSH Term

Animals
Mice
Adenocarcinoma of Lung
Cell Transformation, Neoplastic
Lung Neoplasms
Proto-Oncogene Proteins p21(ras)

Chemicals

Proto-Oncogene Proteins p21(ras)
Hras protein, mouse

Word Cloud

Created with Highcharts 10.0.0cellsLUADcellAT1originlungintermediateadenocarcinomacancerdistinctalveolarepithelialtypeoncogenesisoncogenicGramd2KRASprimarilyKRT8statescanLungprevalentsubtypepresentsclinicallyhighdegreebiologicalheterogeneityclinicaloutcomescurrentparadigmetiologypositsIIAT2primaryroleremainsunknownexaminetransformationmouseGram-domaincontaining2viaActivationinducesmultifocalpapillaryhistologyFurthermoreobservedAT2-AT1-derivedSCGB3A2anothermarkerassociatedsuggestingdifferentmechanismstumorevolutionCollectivelystudyrevealsservesuggestssubtypesbasedconsidereddevelopmenttherapeuticsAlveolargiveriseKRAS-inducedCP:Cancer+KrasG12Dsignalingspatialtranscriptomicsequencing

Similar Articles

Cited By (2)