IPOP: An Integrative Plant Multi-omics Platform for Cross-species Comparison and Evolutionary Study.

Wenyue Huang, Xiaona Hu, Yanlin Ren, Minggui Song, Chuang Ma, Zhenyan Miao
Author Information
  1. Wenyue Huang: State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
  2. Xiaona Hu: College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
  3. Yanlin Ren: State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
  4. Minggui Song: State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
  5. Chuang Ma: State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China. ORCID
  6. Zhenyan Miao: State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.

Abstract

The advent of high-throughput sequencing technologies has led to the production of a significant amount of omics data in plants, which serves as valuable assets for conducting cross-species multi-omics comparative analysis. Nevertheless, the current dearth of comprehensive platforms providing evolutionary annotation information and multi-species multi-omics data impedes users from systematically and efficiently performing evolutionary and functional analysis on specific genes. In order to establish an advanced plant multi-omics platform that provides timely, accurate, and high-caliber omics information, we collected 7 distinct types of omics data from 6 monocots, 6 dicots, and 1 moss, and reanalyzed these data using standardized pipelines. Additionally, we furnished homology information, duplication events, and phylostratigraphic stages of 13 species to facilitate evolutionary examination. Furthermore, the integrative plant omics platform (IPOP) is bundled with a variety of online analysis tools that aid users in conducting evolutionary and functional analysis. Specifically, the Multi-omics Integration Analysis tool is available to consolidate information from diverse omics sources, while the Transcriptome-wide Association Analysis tool facilitates the linkage of functional analysis with phenotype. To illustrate the application of IPOP, we conducted a case study on the YTH domain gene family, wherein we observed shared functionalities within orthologous groups and discerned variations in evolutionary patterns across these groups. To summarize, the IPOP platform offers valuable evolutionary insights and multi-omics data to the plant sciences community, effectively addressing the need for cross-species comparison and evolutionary research platforms. All data and modules within IPOP are freely accessible for academic purposes (http://omicstudio.cloud:4012/ipod/).

Keywords

References

  1. Nat Genet. 2016 Mar;48(3):245-52 [PMID: 26854917]
  2. Nucleic Acids Res. 2016 Jul 8;44(W1):W160-5 [PMID: 27079975]
  3. Bioinformatics. 2016 Oct 1;32(19):3047-8 [PMID: 27312411]
  4. Mol Plant. 2021 Oct 4;14(10):1604-1606 [PMID: 34455096]
  5. Bioinformatics. 2011 Jun 1;27(11):1571-2 [PMID: 21493656]
  6. Nat Protoc. 2016 Sep;11(9):1650-67 [PMID: 27560171]
  7. J Biol Chem. 2010 May 7;285(19):14701-10 [PMID: 20167602]
  8. PLoS Comput Biol. 2013;9(8):e1003118 [PMID: 23950696]
  9. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  10. Mol Plant. 2023 May 1;16(5):794-797 [PMID: 36950735]
  11. Cell. 2016 Jul 14;166(2):481-491 [PMID: 27293186]
  12. Nature. 2012 Jan 04;481(7381):389-93 [PMID: 22217937]
  13. Trends Genet. 2023 Jul;39(7):545-559 [PMID: 36801111]
  14. Cell Syst. 2016 Jul;3(1):95-8 [PMID: 27467249]
  15. Nucleic Acids Res. 2023 Jan 6;51(D1):D18-D28 [PMID: 36420893]
  16. Plant Cell. 2018 May;30(5):986-1005 [PMID: 29618631]
  17. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  18. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  19. Nucleic Acids Res. 2020 Jan 8;48(D1):D927-D932 [PMID: 31566222]
  20. Signal Transduct Target Ther. 2021 Feb 21;6(1):74 [PMID: 33611339]
  21. Bioinformatics. 2018 Sep 1;34(17):i884-i890 [PMID: 30423086]
  22. Nucleic Acids Res. 2018 Jan 4;46(D1):D1150-D1156 [PMID: 29059333]
  23. Gigascience. 2021 Feb 16;10(2): [PMID: 33590861]
  24. Plant Physiol. 2020 Jan;182(1):345-360 [PMID: 31409695]
  25. Nat Commun. 2015 Nov 20;6:8974 [PMID: 26584889]
  26. Trends Genet. 2007 Nov;23(11):533-9 [PMID: 18029048]
  27. Plant Cell Physiol. 2015 Jan;56(1):e9 [PMID: 25505034]
  28. BMC Genomics. 2015;16 Suppl 12:S11 [PMID: 26680022]
  29. Mol Biol Evol. 2017 Jul 1;34(7):1812-1819 [PMID: 28387841]
  30. Bioinformatics. 2018 Feb 1;34(3):381-387 [PMID: 28968643]
  31. Bioinformatics. 2011 Aug 1;27(15):2156-8 [PMID: 21653522]
  32. Genome Biol. 2008;9(9):R137 [PMID: 18798982]
  33. Bioinformatics. 2015 Jul 15;31(14):2382-3 [PMID: 25765347]
  34. Nucleic Acids Res. 2021 Jan 8;49(D1):D1445-D1451 [PMID: 33219693]
  35. Genome Biol. 2019 Nov 14;20(1):238 [PMID: 31727128]
  36. BMC Plant Biol. 2017 Jun 8;17(1):101 [PMID: 28595571]
  37. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  38. Nat Methods. 2014 Apr;11(4):407-9 [PMID: 24531419]
  39. Bioinformatics. 2018 Nov 1;34(21):3747-3749 [PMID: 29850798]
  40. Nat Methods. 2015 Jan;12(1):59-60 [PMID: 25402007]
  41. Plant J. 2023 Nov;116(4):1018-1029 [PMID: 37310261]
  42. Mol Plant. 2021 Dec 6;14(12):1965-1968 [PMID: 34715393]
  43. Genome Biol. 2019 Feb 21;20(1):38 [PMID: 30791939]
  44. Plant Cell. 2014 Jan;26(1):121-35 [PMID: 24488960]
  45. Plant J. 2013 Mar;73(6):941-51 [PMID: 23216999]
  46. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  47. Sci Rep. 2017 Aug 8;7(1):7567 [PMID: 28790409]
  48. Nucleic Acids Res. 2020 Jan 8;48(D1):D1076-D1084 [PMID: 31665439]
  49. Mol Biol Evol. 2022 Jan 7;39(1): [PMID: 34633447]
  50. Genome Biol. 2015 Dec 01;16:259 [PMID: 26619908]
  51. iScience. 2020 Jun 26;23(6):101241 [PMID: 32629608]
  52. Bioinformatics. 2010 Mar 15;26(6):841-2 [PMID: 20110278]
  53. Nat Commun. 2022 Jun 14;13(1):3413 [PMID: 35701419]
  54. BMC Bioinformatics. 2009 Dec 15;10:421 [PMID: 20003500]
  55. Mol Biol Evol. 2009 Jul;26(7):1641-50 [PMID: 19377059]

Grants

  1. 32000410/National Natural Science Foundation of China

MeSH Term

Multiomics
Plants
Biological Evolution
Gene Expression Profiling
Phenotype

Word Cloud

Created with Highcharts 10.0.0evolutionarydataomicsmulti-omicsanalysisinformationfunctionalplantIPOPplatformvaluableconductingcross-speciesplatformsusers6Multi-omicsAnalysistoolwithingroupsgenomicsadventhigh-throughputsequencingtechnologiesledproductionsignificantamountplantsservesassetscomparativeNeverthelesscurrentdearthcomprehensiveprovidingannotationmulti-speciesimpedessystematicallyefficientlyperformingspecificgenesorderestablishadvancedprovidestimelyaccuratehigh-calibercollected7distincttypesmonocotsdicots1mossreanalyzedusingstandardizedpipelinesAdditionallyfurnishedhomologyduplicationeventsphylostratigraphicstages13speciesfacilitateexaminationFurthermoreintegrativebundledvarietyonlinetoolsaidSpecificallyIntegrationavailableconsolidatediversesourcesTranscriptome-wideAssociationfacilitateslinkagephenotypeillustrateapplicationconductedcasestudyYTHdomaingenefamilywhereinobservedsharedfunctionalitiesorthologousdiscernedvariationspatternsacrosssummarizeoffersinsightssciencescommunityeffectivelyaddressingneedcomparisonresearchmodulesfreelyaccessibleacademicpurposeshttp://omicstudiocloud:4012/ipod/IPOP:IntegrativePlantPlatformCross-speciesComparisonEvolutionaryStudyintegration

Similar Articles

Cited By