Uncovering the Chemosensory System of a Subterranean Termite, (Shiraki) (Isoptera: Termitidae): Revealing the Chemosensory Genes and Gene Expression Patterns.

Rana Muhammad Kaleem Ullah, Bao Jia, Sheng Liang, Aatika Sikandar, Fukun Gao, Haiyan Wu
Author Information
  1. Rana Muhammad Kaleem Ullah: State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China.
  2. Bao Jia: Nanning Institute of Termite Control, Nanning 530023, China.
  3. Sheng Liang: Nanning Institute of Termite Control, Nanning 530023, China.
  4. Aatika Sikandar: State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China. ORCID
  5. Fukun Gao: State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China.
  6. Haiyan Wu: State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China. ORCID

Abstract

Termites are eusocial insects. Chemical signals between colony members are crucial to the smooth running of colony operations, but little is known about their olfactory system and the roles played by various chemosensory genes in this process. Chemosensory genes are involved in basic olfactory perception in insects. (Shiraki) is one of the most damaging pests to agricultural crops, forests, and human-made structures. To better understand the olfactory system and the genes involved in olfactory processing in , we produced a transcriptome of worker termites. In this study, we identified 13 , 1 , 15 , 9 , and 4 . Multiple sequence alignments were used in the phylogenetic study, which included data from other termite species and a wide variety of insect species. Moreover, we also investigated the mRNA expression levels using qRT-PCR. The significantly high expression levels of , , , and suggest that these genes may play important roles in olfactory processing in termite social behavior, including caste differentiation, nestmate and non-nestmate discrimination, and the performance of colony operations among members. Our research establishes a foundation for future molecular-level functional studies of chemosensory genes in , which might lead to the identification of novel targets for termite integrated pest management.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2021 Dec 21;118(51): [PMID: 34911758]
  2. J Exp Zool B Mol Dev Evol. 2018 Jul;330(5):265-278 [PMID: 29566459]
  3. Genes Brain Behav. 2020 Feb;19(2):e12529 [PMID: 30345606]
  4. Heredity (Edinb). 2009 Sep;103(3):208-16 [PMID: 19436326]
  5. Trends Biochem Sci. 2004 May;29(5):257-64 [PMID: 15130562]
  6. Science. 2018 Mar 2;359(6379):1047-1050 [PMID: 29371428]
  7. Front Mol Neurosci. 2022 Jun 30;15:823563 [PMID: 35845607]
  8. Int J Plant Genomics. 2008;2008:619832 [PMID: 18483572]
  9. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10996-1001 [PMID: 18653762]
  10. J Mol Biol. 2011 Dec 2;414(3):401-12 [PMID: 22019737]
  11. Nihon Yakurigaku Zasshi. 2009 Nov;134(5):248-53 [PMID: 19915283]
  12. Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5667-72 [PMID: 21282651]
  13. Genomics. 2020 Jul;112(4):2713-2728 [PMID: 32145380]
  14. Nat Ecol Evol. 2018 Mar;2(3):557-566 [PMID: 29403074]
  15. Sci Rep. 2017 Aug 4;7(1):7349 [PMID: 28779161]
  16. Genomics. 1999 Aug 15;60(1):31-9 [PMID: 10458908]
  17. Comp Biochem Physiol Part D Genomics Proteomics. 2012 Mar;7(1):14-27 [PMID: 22079412]
  18. BMC Bioinformatics. 2003 Sep 11;4:41 [PMID: 12969510]
  19. Insect Mol Biol. 2014 Dec;23(6):733-42 [PMID: 25047816]
  20. Cell. 1999 Mar 5;96(5):725-36 [PMID: 10089887]
  21. PLoS Genet. 2010 Aug 19;6(8):e1001064 [PMID: 20808886]
  22. Annu Rev Entomol. 2006;51:113-35 [PMID: 16332206]
  23. PLoS One. 2010 Mar 01;5(3):e9471 [PMID: 20208991]
  24. BMC Evol Biol. 2008 Feb 06;8:41 [PMID: 18254951]
  25. Insect Mol Biol. 2023 Aug;32(4):424-435 [PMID: 37017304]
  26. Front Physiol. 2018 Apr 24;9:432 [PMID: 29740343]
  27. J Insect Sci. 2022 Jul 1;22(4): [PMID: 36001302]
  28. Proc Natl Acad Sci U S A. 2003 Nov 25;100 Suppl 2:14537-42 [PMID: 14608037]
  29. Genome Biol Evol. 2021 Sep 1;13(9): [PMID: 34390578]
  30. Genes Brain Behav. 2011 Aug;10(6):648-57 [PMID: 21605338]
  31. Biol Rev Camb Philos Soc. 2018 Feb;93(1):184-200 [PMID: 28480618]
  32. Biochem Biophys Res Commun. 1999 Dec 20;266(2):386-91 [PMID: 10600513]
  33. Genome Res. 2002 Sep;12(9):1357-69 [PMID: 12213773]
  34. Nature. 2007 Nov 8;450(7167):289-93 [PMID: 17943085]
  35. Insect Mol Biol. 2005 Jan;14(1):31-44 [PMID: 15663773]
  36. Neuron. 1994 Jan;12(1):35-49 [PMID: 7545907]
  37. Neuron. 1999 Feb;22(2):327-38 [PMID: 10069338]
  38. Genome Biol Evol. 2021 Mar 1;13(3): [PMID: 33484563]
  39. PLoS Genet. 2012;8(8):e1002930 [PMID: 22952454]
  40. Arch Insect Biochem Physiol. 2013 Jan;82(1):29-42 [PMID: 23027616]
  41. FEBS Lett. 1999 Dec 24;464(1-2):85-90 [PMID: 10611489]
  42. J Mol Evol. 1994 Mar;38(3):250-62 [PMID: 8006992]
  43. Bull Entomol Res. 2011 Aug;101(4):383-91 [PMID: 21205397]
  44. Neuron. 2005 Jan 20;45(2):193-200 [PMID: 15664171]
  45. Science. 2009 May 8;324(5928):758 [PMID: 19423819]
  46. PLoS One. 2016 Jan 13;11(1):e0146125 [PMID: 26760975]
  47. J Biol Chem. 1994 Jun 10;269(23):16340-7 [PMID: 8206941]
  48. Insect Biochem Mol Biol. 2009 Jul;39(7):448-56 [PMID: 19364529]
  49. Genome Res. 2006 Nov;16(11):1395-403 [PMID: 17065611]
  50. Int J Biol Sci. 2018 Nov 1;14(14):1935-1949 [PMID: 30585258]
  51. Gene. 1997 Nov 20;202(1-2):39-43 [PMID: 9427543]
  52. Nat Commun. 2014 May 20;5:3636 [PMID: 24845553]
  53. Front Physiol. 2018 Jul 12;9:872 [PMID: 30050456]
  54. Science. 2000 Mar 10;287(5459):1830-4 [PMID: 10710312]
  55. Insect Biochem Mol Biol. 2020 Mar;118:103313 [PMID: 31911087]
  56. Genome Biol Evol. 2015 Aug 12;7(8):2407-16 [PMID: 26272716]
  57. Insect Mol Biol. 2022 Oct;31(5):568-584 [PMID: 35499809]
  58. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D115-9 [PMID: 14681372]
  59. Insect Biochem Mol Biol. 1996 Sep-Oct;26(8-9):875-82 [PMID: 9014332]
  60. Eur J Biochem. 2003 Aug;270(16):3398-407 [PMID: 12899697]
  61. J Econ Entomol. 2020 Dec 9;113(6):2941-2949 [PMID: 33128448]
  62. Arch Insect Biochem Physiol. 2014 Feb;85(2):114-26 [PMID: 24436214]
  63. Insect Mol Biol. 2003 Dec;12(6):549-60 [PMID: 14986916]
  64. Insect Biochem Mol Biol. 2012 Jan;42(1):41-50 [PMID: 22075131]
  65. Neuron. 2004 Sep 2;43(5):703-14 [PMID: 15339651]
  66. Eur J Biochem. 1999 Jun;262(3):745-54 [PMID: 10411636]
  67. Nature. 2013 Jun 27;498(7455):487-91 [PMID: 23719379]
  68. Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5673-8 [PMID: 21282631]
  69. J Econ Entomol. 2006 Apr;99(2):455-61 [PMID: 16686147]
  70. Insect Biochem Mol Biol. 2000 Mar;30(3):233-41 [PMID: 10732991]
  71. Insect Mol Biol. 2005 Aug;14(4):423-32 [PMID: 16033435]
  72. Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4499-504 [PMID: 16537425]
  73. Cell. 2001 Mar 9;104(5):661-73 [PMID: 11257221]
  74. Nat Rev Genet. 2008 Dec;9(12):951-63 [PMID: 19002141]
  75. Insect Mol Biol. 2012 Apr;21(2):235-45 [PMID: 22243654]
  76. Genes (Basel). 2020 Sep 29;11(10): [PMID: 33003564]
  77. Proc Natl Acad Sci U S A. 2022 Jan 18;119(3): [PMID: 35042774]
  78. Front Physiol. 2019 Jun 11;10:714 [PMID: 31244679]
  79. Chem Senses. 2001 Sep;26(7):833-44 [PMID: 11555479]
  80. Sci Rep. 2017 Dec;7(1):8 [PMID: 28127058]
  81. Protein Expr Purif. 2011 Feb;75(2):165-71 [PMID: 20828619]
  82. PLoS One. 2012;7(11):e50383 [PMID: 23209730]
  83. Dev Biol. 1976 Jul 15;51(2):280-99 [PMID: 955260]
  84. Nature. 2020 Mar;579(7799):402-408 [PMID: 32132713]
  85. J Biol Chem. 1997 Jun 6;272(23):14792-9 [PMID: 9169446]
  86. BMC Genomics. 2009 Jul 23;10:332 [PMID: 19624863]
  87. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D277-80 [PMID: 14681412]
  88. Heredity (Edinb). 2013 Jun;110(6):538-47 [PMID: 23403962]
  89. PLoS One. 2012;7(1):e30040 [PMID: 22291900]
  90. Cell Mol Life Sci. 2018 Feb;75(3):485-508 [PMID: 28828501]
  91. Insects. 2022 Jun 29;13(7): [PMID: 35886773]
  92. Nat Protoc. 2013 Aug;8(8):1494-512 [PMID: 23845962]
  93. Plant Cell Environ. 2021 Apr;44(4):1030-1043 [PMID: 33047347]
  94. PLoS One. 2012;7(3):e32759 [PMID: 22427877]
  95. Cell Mol Life Sci. 2006 Jul;63(14):1658-76 [PMID: 16786224]
  96. Insect Sci. 2020 Jun;27(3):531-544 [PMID: 30593726]
  97. Mol Biol Evol. 2009 Jun;26(6):1273-87 [PMID: 19252076]
  98. Insect Biochem Mol Biol. 2018 Aug;99:37-53 [PMID: 29800678]
  99. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13874-9 [PMID: 10570166]
  100. Insect Mol Biol. 2016 Oct;25(5):519-29 [PMID: 27228010]
  101. Insect Biochem Mol Biol. 2001 Nov 1;31(12):1173-81 [PMID: 11583930]
  102. J Mol Evol. 2014 Aug;79(1-2):21-39 [PMID: 25038840]
  103. Nat Commun. 2017 Jun 05;8:15709 [PMID: 28580965]

Word Cloud

Created with Highcharts 10.0.0olfactorygenescolonysystemchemosensoryChemosensorytermiteinsectsmembersoperationsrolesinvolvedShirakiprocessingstudyspeciesexpressionlevelssocialbehaviorTermiteseusocialChemicalsignalscrucialsmoothrunninglittleknownplayedvariousprocessbasicperceptiononedamagingpestsagriculturalcropsforestshuman-madestructuresbetterunderstandproducedtranscriptomeworkertermitesidentified1311594MultiplesequencealignmentsusedphylogeneticincludeddatawidevarietyinsectMoreoveralsoinvestigatedmRNAusingqRT-PCRsignificantlyhighsuggestmayplayimportantincludingcastedifferentiationnestmatenon-nestmatediscriminationperformanceamongresearchestablishesfoundationfuturemolecular-levelfunctionalstudiesmightleadidentificationnoveltargetsintegratedpestmanagementUncoveringSystemSubterraneanTermiteIsoptera:Termitidae:RevealingGenesGeneExpressionPatternsOdontotermesformosanus

Similar Articles

Cited By