Adhesion Behavior in Fish: From Structures to Applications.

Jinhao Wang, Shukun Wang, Long Zheng, Luquan Ren
Author Information
  1. Jinhao Wang: Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China.
  2. Shukun Wang: School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China.
  3. Long Zheng: Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China.
  4. Luquan Ren: Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China.

Abstract

In nature, some fish can adhere tightly to the surface of stones, aquatic plants, and even other fish bodies. This adhesion behavior allows these fish to fix, eat, hide, and migrate in complex and variable aquatic environments. The adhesion function is realized by the special mouth and sucker tissue of fish. Inspired by adhesion fish, extensive research has recently been carried out. Therefore, this paper presents a brief overview to better explore underwater adhesion mechanisms and provide bionic applications. Firstly, the adhesion organs and structures of biological prototypes (e.g., clingfish, remora, , suckermouth catfish, hill stream loach, and goby) are presented separately, and the underwater adhesion mechanisms are analyzed. Then, based on bionics, it is explained that the adhesion structures and components are designed and created for applications (e.g., flexible gripping adhesive discs and adhesive motion devices). Furthermore, we offer our perspectives on the limitations and future directions.

Keywords

References

  1. Sci Rep. 2016 Mar 24;6:23711 [PMID: 27010864]
  2. Biol Lett. 2011 Oct 23;7(5):695-8 [PMID: 21508026]
  3. Philos Trans R Soc Lond B Biol Sci. 2019 Oct 28;374(1784):20190204 [PMID: 31495305]
  4. J Exp Biol. 2012 Nov 15;215(Pt 22):3925-36 [PMID: 23100486]
  5. Ann Rev Mar Sci. 2015;7:521-45 [PMID: 25251278]
  6. Sci Robot. 2017 Sep 20;2(10): [PMID: 33157888]
  7. J Exp Biol. 2014 Jul 15;217(Pt 14):2548-54 [PMID: 25031458]
  8. J Exp Zool B Mol Dev Evol. 2014 Nov;322(7):540-52 [PMID: 24677573]
  9. Soft Matter. 2018 Nov 7;14(43):8771-8779 [PMID: 30335118]
  10. Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21146-51 [PMID: 22160688]
  11. Bioinspir Biomim. 2019 Oct 25;14(6):066016 [PMID: 31553967]
  12. J R Soc Interface. 2020 Apr;17(165):20190590 [PMID: 32264740]
  13. Proc Natl Acad Sci U S A. 2020 May 12;117(19):10585-10592 [PMID: 32341168]
  14. ACS Appl Mater Interfaces. 2021 Aug 11;13(31):37904-37914 [PMID: 34319083]
  15. Adv Sci (Weinh). 2021 May 14;8(13):2100411 [PMID: 34258167]
  16. J Exp Biol. 2009 Jan;212(Pt 1):116-25 [PMID: 19088217]
  17. Biomimetics (Basel). 2023 Feb 16;8(1): [PMID: 36810416]
  18. Bioinspir Biomim. 2020 Aug 21;15(5):056018 [PMID: 32820724]
  19. Biol Lett. 2013 May 01;9(3):20130234 [PMID: 23637393]
  20. Sci Robot. 2018 Mar 21;3(16): [PMID: 33141748]
  21. J Mech Behav Biomed Mater. 2017 Sep;73:76-85 [PMID: 28153482]
  22. ACS Appl Mater Interfaces. 2019 Dec 18;11(50):47571-47576 [PMID: 31746182]
  23. J Anat. 2021 Sep;239(3):747-754 [PMID: 33928628]
  24. J Morphol. 2010 Jan;271(1):25-35 [PMID: 19623624]
  25. Microsc Microanal. 2018 Jun;24(3):310-317 [PMID: 29952284]
  26. J Exp Biol. 2021 Jan 21;224(Pt 2): [PMID: 33328291]
  27. Sci Rep. 2016 Nov 16;6:37221 [PMID: 27849018]
  28. J Exp Biol. 2013 Nov 1;216(Pt 21):3988-95 [PMID: 24133150]
  29. J Morphol. 2012 Oct;273(10):1127-49 [PMID: 22811076]
  30. Drug Dev Ind Pharm. 2021 Apr;47(4):521-534 [PMID: 33307855]
  31. Sci Robot. 2022 May 4;7(66):eabm6695 [PMID: 35584203]
  32. J Morphol. 2012 Dec;273(12):1353-66 [PMID: 22833478]
  33. Bioinspir Biomim. 2006 Dec;1(4):S35-41 [PMID: 17671316]
  34. Zoology (Jena). 2021 Dec;149:125969 [PMID: 34601374]
  35. Micromachines (Basel). 2022 Jan 10;13(1): [PMID: 35056275]
  36. J Anat. 2020 Oct;237(4):643-654 [PMID: 32484929]
  37. J Morphol. 2013 Jul;274(7):733-42 [PMID: 23450656]
  38. J Morphol. 2020 Oct;281(10):1280-1295 [PMID: 32790104]
  39. Integr Org Biol. 2019 Nov 21;1(1):obz029 [PMID: 33791543]
  40. Integr Comp Biol. 2022 Oct 29;62(4):934-944 [PMID: 35767861]
  41. J Exp Zool A Ecol Genet Physiol. 2011 Mar 1;315(3):121-31 [PMID: 21370480]
  42. J Exp Biol. 2015 Nov;218(Pt 22):3551-8 [PMID: 26417010]
  43. Mol Phylogenet Evol. 2020 Oct;151:106862 [PMID: 32473335]
  44. Proc Natl Acad Sci U S A. 2021 Dec 7;118(49): [PMID: 34853171]
  45. Zoology (Jena). 2008;111(2):114-22 [PMID: 18222661]
  46. Zootaxa. 2018 Feb 07;4378(1):49-70 [PMID: 29690016]
  47. J Morphol. 2014 Jan;275(1):100-10 [PMID: 24142882]
  48. Zoology (Jena). 2006;109(4):300-9 [PMID: 16962300]
  49. Eur J Morphol. 2002 Jul;40(3):161-9 [PMID: 14566609]
  50. Physiol Biochem Zool. 2009 Jan-Feb;82(1):51-62 [PMID: 19072236]
  51. Sci Rep. 2019 Nov 12;9(1):16571 [PMID: 31719624]
  52. Proc Biol Sci. 2013 Jul 17;280(1766):20131200 [PMID: 23864599]
  53. Nat Mater. 2016 Apr;15(4):413-8 [PMID: 26808461]
  54. Annu Rev Physiol. 2008;70:143-63 [PMID: 17883331]
  55. J Morphol. 2014 Sep;275(9):1066-79 [PMID: 24796692]
  56. Philos Trans R Soc Lond B Biol Sci. 2019 Oct 28;374(1784):20190199 [PMID: 31495309]
  57. Anat Histol Embryol. 2008 Apr;37(2):101-13 [PMID: 17986310]
  58. Mol Phylogenet Evol. 2014 Jan;70:260-71 [PMID: 24125831]
  59. Science. 2003 Nov 28;302(5650):1566-9 [PMID: 14645849]
  60. J Exp Biol. 1995;198(Pt 8):1629-36 [PMID: 9319534]
  61. Curr Biol. 2022 Jun 20;32(12):R666-R671 [PMID: 35728550]
  62. Science. 2012 Jan 20;335(6066):277 [PMID: 22267786]
  63. Life (Basel). 2021 Sep 11;11(9): [PMID: 34575101]
  64. J Exp Biol. 1999 Dec;202(Pt 23):3397-403 [PMID: 10562522]
  65. Biomimetics (Basel). 2022 Nov 18;7(4): [PMID: 36412730]
  66. J Exp Biol. 2022 May 1;225(9): [PMID: 35467004]
  67. Interface Focus. 2017 Feb 6;7(1):20160094 [PMID: 28163884]
  68. Bioinspir Biomim. 2022 Mar 10;17(3): [PMID: 35073526]
  69. Interface Focus. 2015 Aug 6;5(4):20150015 [PMID: 26464786]
  70. Natl Sci Rev. 2023 Jun 29;10(8):nwad183 [PMID: 37560444]
  71. J Exp Biol. 2011 Apr 1;214(Pt 7):1181-93 [PMID: 21389204]
  72. Nature. 2021 Jan;589(7841):242-245 [PMID: 33239789]

Grants

  1. CMNM-KF202103/the Open Project Program of Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Ministry of Education, Changchun University of Science and Technology
  2. 2022-SGTTXM-018/the Project of Shandong High-end Medical Device Innovation and Entrepreneurship Community

Word Cloud

Created with Highcharts 10.0.0adhesionfishunderwatermechanismsapplicationsaquaticbionicstructuresegadhesivenaturecanadheretightlysurfacestonesplantsevenbodiesbehaviorallowsfixeathidemigratecomplexvariableenvironmentsfunctionrealizedspecialmouthsuckertissueInspiredextensiveresearchrecentlycarriedThereforepaperpresentsbriefoverviewbetterexploreprovideFirstlyorgansbiologicalprototypesclingfishremorasuckermouthcatfishhillstreamloachgobypresentedseparatelyanalyzedbasedbionicsexplainedcomponentsdesignedcreatedflexiblegrippingdiscsmotiondevicesFurthermoreofferperspectiveslimitationsfuturedirectionsAdhesionBehaviorFish:StructuresApplicationsadherentclassificationsystems

Similar Articles

Cited By