Azadirachtin Attenuates Carcinogen Benzo(a) Pyrene-Induced DNA Damage, Cell Cycle Arrest, Apoptosis, Inflammatory, Metabolic, and Oxidative Stress in HepG2 Cells.

Annie John, Haider Raza
Author Information
  1. Annie John: Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, 5th Postal Region, Al Ain P.O. Box 15551, United Arab Emirates. ORCID
  2. Haider Raza: Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, 5th Postal Region, Al Ain P.O. Box 15551, United Arab Emirates. ORCID

Abstract

Azadirachtin (AZD), a limonoid from the versatile, tropical neem tree (Azadirachta indica), is well known for its many medicinal, and pharmacological effects. Its effects as an anti-oxidant, anti-inflammatory, and anti-cancer agent are well known. However, not many studies have explored the effects of AZD on toxicities induced by benzo(a)pyrene (B(a)P), a toxic component of cigarette smoke known to cause DNA damage and cell cycle arrest, leading to different kinds of cancer. In the present study, using HepG2 cells, we investigated the protective effects of Azadirachtin (AZD) against B(a)P-induced oxidative/nitrosative and metabolic stress and mitochondrial dysfunction. Treatment with 25 µM B(a)P for 24 h demonstrated an increased production of reactive oxygen species (ROS), followed by increased lipid peroxidation and DNA damage presumably, due to the increased metabolic activation of B(a)P by CYP 450 1A1/1A2 enzymes. We also observed intrinsic and extrinsic apoptosis, alterations in glutathione-dependent redox homeostasis, cell cycle arrest, and inflammation after B(a)P treatment. Cells treated with 25 µM AZD for 24 h showed decreased oxidative stress and apoptosis, partial protection from DNA damage, and an improvement in mitochondrial functions and bioenergetics. The improvement in antioxidant status, anti-inflammatory potential, and alterations in cell cycle regulatory markers qualify AZD as a potential therapeutic in combination with anti-cancer drugs.

Keywords

References

  1. Toxicology. 2007 Jun 3;235(1-2):1-10 [PMID: 17416446]
  2. Drug Chem Toxicol. 2022 Mar;45(2):741-749 [PMID: 32506967]
  3. Int J Environ Res Public Health. 2017 Mar 09;14(3): [PMID: 28282959]
  4. Med Res Rev. 2023 Aug 17;: [PMID: 37589457]
  5. Chem Biol Interact. 2007 Apr 5;167(1):41-55 [PMID: 17289009]
  6. J Exp Clin Cancer Res. 2019 Jun 7;38(1):242 [PMID: 31174565]
  7. World J Gastroenterol. 2006 May 7;12(17):2749-55 [PMID: 16718763]
  8. Toxicol Sci. 2010 Oct;117(2):381-92 [PMID: 20624995]
  9. Mol Carcinog. 2002 Jan;33(1):1-8 [PMID: 11807952]
  10. Toxicol In Vitro. 2022 Mar;79:105296 [PMID: 34896602]
  11. Cell Cycle. 2007 Jul 15;6(14):1753-61 [PMID: 17630511]
  12. Cell Physiol Biochem. 2013;31(1):15-24 [PMID: 23343613]
  13. Biomolecules. 2020 Feb 05;10(2): [PMID: 32033264]
  14. BMC Genomics. 2011 Jun 29;12:333 [PMID: 21714911]
  15. Front Nutr. 2022 Mar 03;9:839364 [PMID: 35308267]
  16. Front Pharmacol. 2016 Aug 08;7:245 [PMID: 27551266]
  17. Cell Physiol Biochem. 2013;31(4-5):683-92 [PMID: 23711494]
  18. Mol Cell Biochem. 2006 Jul;287(1-2):79-89 [PMID: 16699726]
  19. Toxicol Sci. 2010 Aug;116(2):549-61 [PMID: 20498004]
  20. Antioxidants (Basel). 2021 Aug 20;10(8): [PMID: 34439562]
  21. PLoS One. 2010 Apr 01;5(4):e9984 [PMID: 20376308]
  22. J Biol Chem. 2003 May 23;278(21):19526-33 [PMID: 12637498]
  23. Methods Cell Biol. 2001;65:97-117 [PMID: 11381612]
  24. Antioxid Redox Signal. 2023 Mar;38(7-9):684-708 [PMID: 36509429]
  25. Chin J Physiol. 2022 Jul-Aug;65(4):199-208 [PMID: 36073568]
  26. Toxicol Mech Methods. 2021 Jul;31(6):467-475 [PMID: 34027802]
  27. Toxicol Lett. 2006 Nov 1;167(1):27-33 [PMID: 17029827]
  28. Nutr Cancer. 2012;64(2):300-6 [PMID: 22243054]
  29. J Hematol Oncol. 2020 May 1;13(1):41 [PMID: 32357912]
  30. Indian J Biochem Biophys. 2007 Aug;44(4):209-15 [PMID: 17970278]
  31. Heliyon. 2018 Nov 12;4(11):e00898 [PMID: 30456321]
  32. Biomedicines. 2021 Dec 18;9(12): [PMID: 34944759]
  33. Genes Nutr. 2011 May;6(2):149-60 [PMID: 21484152]
  34. Hum Exp Toxicol. 2014 Mar;33(3):240-50 [PMID: 23839155]
  35. Neoplasia. 2000 Sep-Oct;2(5):460-70 [PMID: 11191113]
  36. Phytother Res. 2008 Sep;22(9):1229-38 [PMID: 18729244]
  37. Fitoterapia. 2019 Apr;134:141-150 [PMID: 30738093]
  38. Environ Health Perspect. 2015 Mar;123(3):246-54 [PMID: 25325763]
  39. Sci Rep. 2018 Apr 13;8(1):5963 [PMID: 29654281]
  40. J Toxicol Sci. 2023;48(2):87-97 [PMID: 36725024]
  41. IARC Monogr Eval Carcinog Risks Hum. 2010;92:1-853 [PMID: 21141735]
  42. PLoS One. 2013 Nov 08;8(11):e78356 [PMID: 24260113]
  43. Environ Toxicol. 2023 Oct;38(10):2429-2439 [PMID: 37436145]
  44. Front Cell Dev Biol. 2022 Jun 20;10:867608 [PMID: 35794865]
  45. Int J Mol Med. 2013 Apr;31(4):922-30 [PMID: 23446805]
  46. Chem Biol Interact. 2023 Mar 1;373:110373 [PMID: 36736873]
  47. Front Physiol. 2022 Dec 01;13:1052608 [PMID: 36531176]
  48. Nat Cell Biol. 2008 Jun;10(6):676-87 [PMID: 18454141]
  49. Ecotoxicol Environ Saf. 2020 Jun 15;196:110556 [PMID: 32247962]
  50. Int J Mol Sci. 2020 Mar 30;21(7): [PMID: 32235460]
  51. Endocrinology. 2007 Oct;148(10):5112-22 [PMID: 17640999]
  52. Biomedicines. 2022 Mar 16;10(3): [PMID: 35327487]
  53. J Biochem Mol Toxicol. 2023 Jan;37(1):e23230 [PMID: 36193556]
  54. PLoS One. 2019 Dec 20;14(12):e0226696 [PMID: 31860682]
  55. PLoS One. 2014 Mar 24;9(3):e92992 [PMID: 24664296]
  56. J Toxicol Sci. 2019;44(2):121-131 [PMID: 30726812]
  57. J Environ Pathol Toxicol Oncol. 2008;27(3):219-32 [PMID: 18652569]
  58. Oncotarget. 2015 Sep 29;6(29):27113-29 [PMID: 26318035]
  59. Ecotoxicol Environ Saf. 2023 Feb;251:114531 [PMID: 36641866]
  60. Biochem J. 2019 Mar 15;476(5):889-907 [PMID: 30814273]
  61. Sci Rep. 2016 Aug 04;6:30776 [PMID: 27488617]
  62. J Biol Chem. 2009 Nov 27;284(48):33311-9 [PMID: 19801633]
  63. PLoS One. 2015 Dec 29;10(12):e0145965 [PMID: 26714183]
  64. Molecules. 2022 Feb 18;27(4): [PMID: 35209168]
  65. Cell Death Dis. 2023 Apr 12;14(4):265 [PMID: 37041133]

Grants

  1. HR-31M464/Research Committee, College of Medicine and Health Sciences, UAE University, Al Ain, UAE

Word Cloud

Created with Highcharts 10.0.0AZDBDNAAzadirachtineffectsPdamageknowncellcycleHepG2stressmitochondrialincreasedapoptosiswellmanyanti-inflammatoryanti-cancerbenzopyrenearrestcellsmetabolicdysfunction25µM24halterationsCellsoxidativeimprovementpotentiallimonoidversatiletropicalneemtreeAzadirachtaindicamedicinalpharmacologicalanti-oxidantagentHoweverstudiesexploredtoxicitiesinducedtoxiccomponentcigarettesmokecauseleadingdifferentkindscancerpresentstudyusinginvestigatedprotectiveP-inducedoxidative/nitrosativeTreatmentdemonstratedproductionreactiveoxygenspeciesROSfollowedlipidperoxidationpresumablydueactivationCYP4501A1/1A2enzymesalsoobservedintrinsicextrinsicglutathione-dependentredoxhomeostasisinflammationtreatmenttreatedshoweddecreasedpartialprotectionfunctionsbioenergeticsantioxidantstatusregulatorymarkersqualifytherapeuticcombinationdrugsAttenuatesCarcinogenBenzoPyrene-InducedDamageCellCycleArrestApoptosisInflammatoryMetabolicOxidativeStress

Similar Articles

Cited By