Sexually Dimorphic Effects of Histamine Degradation by Enteric Glial Histamine -Methyltransferase (HNMT) on Visceral Hypersensitivity.

Jonathon L McClain, Wilmarie Morales-Soto, Jacques Gonzales, Visha Parmar, Elena Y Demireva, Brian D Gulbransen
Author Information
  1. Jonathon L McClain: Department of Physiology, Michigan State University, 567 Wilson Road, East Lansing, MI 48824, USA.
  2. Wilmarie Morales-Soto: Department of Physiology, Michigan State University, 567 Wilson Road, East Lansing, MI 48824, USA.
  3. Jacques Gonzales: Department of Physiology, Michigan State University, 567 Wilson Road, East Lansing, MI 48824, USA.
  4. Visha Parmar: Department of Physiology, Michigan State University, 567 Wilson Road, East Lansing, MI 48824, USA.
  5. Elena Y Demireva: Transgenic and Genome Editing Facility, Institute for Quantitative Health and Engineering, Michigan State University, 567 Wilson Road, East Lansing, MI 48824, USA.
  6. Brian D Gulbransen: Department of Physiology, Michigan State University, 567 Wilson Road, East Lansing, MI 48824, USA. ORCID

Abstract

Histamine is a neuromodulator that affects gut motility and visceral sensitivity through intrinsic and extrinsic neural pathways, yet the mechanisms regulating histamine availability in these pathways remain poorly understood. Here, we show that enteric glia contribute to histamine clearance in the enteric nervous system (ENS) through their expression of the enzyme histamine -methyltransferase (HNMT). Glial HNMT expression was initially assessed using immunolabeling and gene expression, and functionally tested using CRISPR-Cas9 to create a Cre-dependent conditional ablation model targeting glia. Immunolabeling, calcium imaging, and visceromotor reflex recordings were used to assess the effects on ENS structure and visceral hypersensitivity. Immunolabeling and gene expression data show that enteric neurons and glia express HNMT. Deleting in Sox10+ enteric glia increased glial histamine levels and altered visceromotor responses to colorectal distension in male mice, with no effect in females. Interestingly, deleting glial protected males from histamine-driven visceral hypersensitivity. These data uncover a significant role for glial HNMT in histamine degradation in the gut, which impacts histamine-driven visceral hypersensitivity in a sex-dependent manner. Changes in the capacity of glia to clear histamines could play a role in the susceptibility to developing visceral pain in disorders of the gut-brain interaction.

Keywords

References

  1. Sci Transl Med. 2022 Jul 27;14(655):eabj1895 [PMID: 35895832]
  2. Ann Allergy Asthma Immunol. 2018 Nov;121(5):568-574 [PMID: 30102965]
  3. Neuroscience. 1988 Apr;25(1):171-9 [PMID: 3393277]
  4. Eur J Neurol. 2010 Feb;17(2):335-8 [PMID: 19538200]
  5. United European Gastroenterol J. 2017 Oct;5(6):887-897 [PMID: 29026603]
  6. Nutrients. 2021 Apr 12;13(4): [PMID: 33921522]
  7. Cell Rep. 2020 Sep 8;32(10):108100 [PMID: 32905782]
  8. Neuropharmacology. 2022 Jul 1;212:109065 [PMID: 35487272]
  9. Cell. 2020 Jan 9;180(1):64-78.e16 [PMID: 31923400]
  10. Biomolecules. 2020 Aug 14;10(8): [PMID: 32824107]
  11. Structure. 2001 Sep;9(9):837-49 [PMID: 11566133]
  12. Gastroenterology. 1994 Dec;107(6):1602-9 [PMID: 7525397]
  13. Rheumatology (Oxford). 2013 Sep;52(9):1599-608 [PMID: 23709238]
  14. Am J Physiol Gastrointest Liver Physiol. 2018 Feb 1;314(2):G188-G200 [PMID: 28971837]
  15. Behav Brain Sci. 1997 Sep;20(3):371-80; discussion 435-513 [PMID: 10097000]
  16. Neurogastroenterol Motil. 1997 Dec;9(4):271-9 [PMID: 9430796]
  17. J Neurophysiol. 2017 Jan 1;117(1):365-375 [PMID: 27784805]
  18. Gastroenterology. 2016 Apr;150(4):875-87.e9 [PMID: 26752109]
  19. Gastroenterology. 2004 Mar;126(3):693-702 [PMID: 14988823]
  20. Am J Physiol Gastrointest Liver Physiol. 2014 Oct 1;307(7):G719-31 [PMID: 25147231]
  21. Cell Mol Gastroenterol Hepatol. 2018 May 29;6(3):321-344 [PMID: 30116771]
  22. Eur J Pharmacol. 2000 Mar 10;391(1-2):81-9 [PMID: 10720638]
  23. Aliment Pharmacol Ther. 2009 Aug;30(3):245-52 [PMID: 19438846]
  24. Br J Pharmacol. 2013 Sep;170(1):38-45 [PMID: 23734637]
  25. Can J Gastroenterol. 1998 May-Jun;12(4):273-5 [PMID: 9659566]
  26. Cell. 2020 Sep 17;182(6):1606-1622.e23 [PMID: 32888429]
  27. Arch Environ Contam Toxicol. 1999 Apr;36(3):341-6 [PMID: 10047603]
  28. Inflamm Res. 2006 Apr;55 Suppl 1:S36-7 [PMID: 16547817]
  29. J Neurochem. 2014 May;129(4):591-601 [PMID: 24471494]
  30. Nat Rev Gastroenterol Hepatol. 2014 Oct;11(10):611-27 [PMID: 25001973]
  31. Medicine (Baltimore). 2019 Jul;98(28):e16297 [PMID: 31305414]
  32. J Rheumatol. 2016 Sep;43(9):1637-42 [PMID: 27422891]
  33. Gastroenterology. 2020 Apr;158(5):1262-1273.e3 [PMID: 31917991]
  34. Neurobiol Aging. 2012 Apr;33(4):836.e1-3 [PMID: 21794955]
  35. PLoS One. 2015 Mar 13;10(3):e0119692 [PMID: 25768024]
  36. Biomed Res. 2011 Jun;32(3):195-201 [PMID: 21673449]
  37. Gastroenterology. 2020 Jun;158(8):2195-2207.e6 [PMID: 32084424]
  38. Immunol Lett. 2001 Apr 2;76(3):175-82 [PMID: 11306145]
  39. Am J Physiol. 1993 Jan;264(1 Pt 1):G74-80 [PMID: 8430807]
  40. J Neurogastroenterol Motil. 2017 Jul 30;23(3):341-348 [PMID: 28551943]
  41. Biochem Pharmacol. 2015 Nov 1;98(1):102-9 [PMID: 26365468]
  42. Am J Physiol Gastrointest Liver Physiol. 2019 Mar 1;316(3):G338-G349 [PMID: 30629470]
  43. Biol Res Nurs. 2003 Jul;5(1):56-65 [PMID: 12886671]
  44. Gastroenterology. 2016 Feb 15;: [PMID: 27144622]
  45. Gut. 2010 Sep;59(9):1213-21 [PMID: 20650926]
  46. Gastroenterology. 2009 Oct;137(4):1425-34 [PMID: 19596012]
  47. Naunyn Schmiedebergs Arch Pharmacol. 1997 Mar;355(3):354-60 [PMID: 9089666]
  48. Neurogastroenterol Motil. 2023 Jun;35(6):e14564 [PMID: 36961084]
  49. Inflamm Res. 1999 Mar;48(3):149-53 [PMID: 10219657]
  50. Physiol Rev. 1999 Oct;79(4):1089-125 [PMID: 10508230]
  51. J Cell Sci. 2005 May 1;118(Pt 9):1773-6 [PMID: 15860725]
  52. Am J Physiol Gastrointest Liver Physiol. 2009 Jul;297(1):G215-27 [PMID: 19407218]
  53. Therap Adv Gastroenterol. 2020 Apr 9;13:1756284820910630 [PMID: 32313554]
  54. Nucleic Acids Res. 1995 Dec 25;23(24):5080-1 [PMID: 8559668]
  55. Nat Protoc. 2008;3(6):1101-8 [PMID: 18546601]
  56. Mol Psychiatry. 2023 Apr;28(4):1451-1465 [PMID: 36732586]
  57. Front Immunol. 2018 Jun 20;9:1392 [PMID: 29973935]
  58. J Pharmacol Exp Ther. 2014 Jul;350(1):181-7 [PMID: 24817035]
  59. Neurogastroenterol Motil. 2023 Jun;35(6):e14585 [PMID: 36989173]
  60. J Pediatr Gastroenterol Nutr. 2016 Mar;62(3):409-13 [PMID: 26308312]
  61. Sci Rep. 2017 Nov 21;7(1):15899 [PMID: 29162912]
  62. Am J Physiol Gastrointest Liver Physiol. 2020 Dec 1;319(6):G655-G668 [PMID: 32996781]
  63. Ann N Y Acad Sci. 1992;664:275-83 [PMID: 1456658]
  64. J Mol Model. 2010 Jun;16(6):1151-8 [PMID: 20013137]
  65. Biol Sex Differ. 2016 Nov 22;7:60 [PMID: 27895892]
  66. Food Sci Biotechnol. 2017 Dec 13;26(6):1463-1474 [PMID: 30263683]
  67. Gut. 2006 Apr;55(4):445-7 [PMID: 16531524]
  68. Agents Actions. 1991 May;33(1-2):192-4 [PMID: 1897438]
  69. Mucosal Immunol. 2018 May;11(3):861-870 [PMID: 29363669]
  70. Gut. 2010 Apr;59(4):481-8 [PMID: 20332520]
  71. Allergy. 2014 Mar;69(3):273-81 [PMID: 24286351]
  72. Glia. 2013 Jun;61(6):905-16 [PMID: 23505051]
  73. Dig Dis Sci. 1992 Jul;37(7):1084-8 [PMID: 1618057]
  74. Nat Med. 2012 Mar 18;18(4):600-4 [PMID: 22426419]
  75. Genetics. 2015 Jun;200(2):423-30 [PMID: 25819794]
  76. Gastroenterology. 2007 Jan;132(1):26-37 [PMID: 17241857]
  77. Allergy. 2008 Dec;63 Suppl 89:1-20 [PMID: 19032340]
  78. Neurosci Lett. 1987 Sep 11;80(1):106-10 [PMID: 2889175]
  79. Pflugers Arch. 1975;357(1-2):35-49 [PMID: 1171456]
  80. J Clin Invest. 2011 Sep;121(9):3412-24 [PMID: 21865647]
  81. Gastroenterology. 2016 May;150(6):1257-61 [PMID: 27147121]
  82. Gut. 2014 Dec;63(12):1873-82 [PMID: 24561612]

Grants

  1. R01 DK103723/NIDDK NIH HHS
  2. R01 DK120862/NIDDK NIH HHS
  3. R01DK120862/NIDDK NIH HHS
  4. R01DK103723/NIDDK NIH HHS

MeSH Term

Female
Male
Mice
Animals
Histamine
Histamine N-Methyltransferase
Neuroglia
Neurons
Brain

Chemicals

Histamine
Histamine N-Methyltransferase

Word Cloud

Created with Highcharts 10.0.0histaminevisceralentericgliaHNMTexpressionHistamineguthypersensitivityglialpathwaysshownervoussystemENSGlialusinggeneImmunolabelingvisceromotordatahistamine-drivenrolepainneuromodulatoraffectsmotilitysensitivityintrinsicextrinsicneuralyetmechanismsregulatingavailabilityremainpoorlyunderstoodcontributeclearanceenzyme-methyltransferaseinitiallyassessedimmunolabelingfunctionallytestedCRISPR-Cas9createCre-dependentconditionalablationmodeltargetingcalciumimagingreflexrecordingsusedassesseffectsstructureneuronsexpressDeletingSox10+increasedlevelsalteredresponsescolorectaldistensionmalemiceeffectfemalesInterestinglydeletingprotectedmalesuncoversignificantdegradationimpactssex-dependentmannerChangescapacityclearhistaminesplaysusceptibilitydevelopingdisordersgut-braininteractionSexuallyDimorphicEffectsDegradationEnteric-MethyltransferaseVisceralHypersensitivityautonomicN-methyltransferaseintestine

Similar Articles

Cited By