The Role of Non-Coding RNAs in Epigenetic Dysregulation in Glioblastoma Development.

Ekaterina Isachesku, Cornelia Braicu, Radu Pirlog, Anja Kocijancic, Constantin Busuioc, Lavinia-Lorena Pruteanu, Deo Prakash Pandey, Ioana Berindan-Neagoe
Author Information
  1. Ekaterina Isachesku: Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.
  2. Cornelia Braicu: Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania. ORCID
  3. Radu Pirlog: Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania. ORCID
  4. Anja Kocijancic: Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway.
  5. Constantin Busuioc: Department of Pathology, National Institute of Infectious Disease, 021105 Bucharest, Romania.
  6. Lavinia-Lorena Pruteanu: Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania. ORCID
  7. Deo Prakash Pandey: Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway.
  8. Ioana Berindan-Neagoe: Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania. ORCID

Abstract

Glioblastoma (GBM) is a primary brain tumor arising from glial cells. The tumor is highly aggressive, the reason for which it has become the deadliest brain tumor type with the poorest prognosis. Like other cancers, it compromises molecular alteration on genetic and epigenetic levels. Epigenetics refers to changes in gene expression or cellular phenotype without the occurrence of any genetic mutations or DNA sequence alterations in the driver tumor-related genes. These epigenetic changes are reversible, making them convenient targets in cancer therapy. Therefore, we aim to review critical epigenetic dysregulation processes in glioblastoma. We will highlight the significant affected tumor-related pathways and their outcomes, such as regulation of cell cycle progression, cell growth, apoptosis, angiogenesis, cell invasiveness, immune evasion, or acquirement of drug resistance. Examples of molecular changes induced by epigenetic modifications, such as DNA epigenetic alterations, histone post-translational modifications (PTMs), and non-coding RNA (ncRNA) regulation, are highlighted. As understanding the role of epigenetic regulators and underlying molecular mechanisms in the overall pro-tumorigenic landscape of glioblastoma is essential, this literature study will provide valuable insights for establishing the prognostic or diagnostic value of various non-coding transcripts, including miRNAs.

Keywords

References

  1. Cell Death Discov. 2022 Aug 4;8(1):350 [PMID: 35927251]
  2. Oncogene. 2009 Apr 9;28(14):1714-24 [PMID: 19252524]
  3. Curr Genomics. 2008 Sep;9(6):394-408 [PMID: 19506729]
  4. Am J Transl Res. 2018 Sep 15;10(9):2834-2847 [PMID: 30323870]
  5. Gene. 2016 Jan 15;576(1 Pt 2):189-94 [PMID: 26435191]
  6. Front Genet. 2018 Oct 23;9:493 [PMID: 30405699]
  7. Front Mol Neurosci. 2018 Nov 15;11:408 [PMID: 30498431]
  8. Front Oncol. 2018 Oct 16;8:448 [PMID: 30386738]
  9. Tohoku J Exp Med. 2023 Jul 8;260(3):205-214 [PMID: 37019647]
  10. Oncotarget. 2018 May 25;9(40):25922-25934 [PMID: 29899831]
  11. Expert Rev Mol Med. 2023 May 08;25:e18 [PMID: 37154101]
  12. Cancer Sci. 2019 May;110(5):1621-1632 [PMID: 30888082]
  13. Neurooncol Pract. 2016 Jun;3(2):77-86 [PMID: 31386084]
  14. Carcinogenesis. 2003 Oct;24(10):1625-35 [PMID: 12869421]
  15. J Pathol. 2014 Jan;232(2):165-77 [PMID: 24114756]
  16. J Exp Clin Cancer Res. 2022 Feb 2;41(1):47 [PMID: 35109908]
  17. Oncol Rep. 2019 Sep;42(3):963-972 [PMID: 31322259]
  18. Tumour Biol. 2016 May;37(5):6761-8 [PMID: 26662303]
  19. BMC Cancer. 2021 Jan 12;21(1):54 [PMID: 33430813]
  20. FASEB J. 2014 Sep;28(9):3930-41 [PMID: 24858276]
  21. Front Nutr. 2019 Sep 25;6:148 [PMID: 31608282]
  22. Front Cell Dev Biol. 2022 Apr 06;10:784968 [PMID: 35465322]
  23. Biosci Rep. 2016 Jun 17;36(3): [PMID: 27160082]
  24. Front Oncol. 2022 Nov 16;12:1033035 [PMID: 36465345]
  25. Pathol Res Pract. 2023 Jun;246:154481 [PMID: 37121053]
  26. J Cell Physiol. 2018 Jan;233(1):378-386 [PMID: 28266716]
  27. J BUON. 2014 Apr-Jun;19(2):502-11 [PMID: 24965413]
  28. Lung Cancer. 2012 May;76(2):171-6 [PMID: 22078727]
  29. Adv Exp Med Biol. 2021;1283:1-16 [PMID: 33155134]
  30. Genes Genomics. 2021 Oct;43(10):1157-1165 [PMID: 34160745]
  31. Int J Mol Sci. 2023 Mar 02;24(5): [PMID: 36902314]
  32. Oncotarget. 2015 Jan 1;6(1):537-46 [PMID: 25428914]
  33. Chem Biol Drug Des. 2013 Jan;81(1):79-84 [PMID: 22834637]
  34. Oncotarget. 2017 Dec 20;9(10):9540-9554 [PMID: 29507709]
  35. Cancers (Basel). 2019 Jun 24;11(6): [PMID: 31238504]
  36. Oncotarget. 2017 Oct 24;8(56):96239-96248 [PMID: 29221202]
  37. Front Oncol. 2023 May 02;13:1144184 [PMID: 37205197]
  38. Oncogene. 2007 Aug 13;26(37):5420-32 [PMID: 17694083]
  39. Oncogene. 2023 Jul;42(31):2363-2373 [PMID: 37433987]
  40. J Neurosurg. 2010 Aug;113(2):310-8 [PMID: 20205512]
  41. Oncol Lett. 2019 Jun;17(6):5343-5350 [PMID: 31186751]
  42. Life Sci Alliance. 2023 Apr 10;6(6): [PMID: 37037593]
  43. Int J Cancer. 2021 Apr 1;148(7):1695-1707 [PMID: 33113214]
  44. J Cell Mol Med. 2023 Sep;27(18):2770-2781 [PMID: 37593885]
  45. Cell Death Dis. 2023 Feb 22;14(2):149 [PMID: 36813772]
  46. Front Oncol. 2019 May 02;9:292 [PMID: 31119097]
  47. J Community Hosp Intern Med Perspect. 2016 Oct 26;6(5):32372 [PMID: 27802852]
  48. ACS Biomater Sci Eng. 2023 Sep 11;9(9):5205-5221 [PMID: 37578350]
  49. J Biosci. 2020;45: [PMID: 33184251]
  50. Clin Exp Metastasis. 2016 Jan;33(1):45-52 [PMID: 26464124]
  51. Cancer Res. 2009 Dec 15;69(24):9211-8 [PMID: 19934320]
  52. Comp Biochem Physiol B Biochem Mol Biol. 2015 Jan;179:1-8 [PMID: 25193329]
  53. Mol Oncol. 2011 Aug;5(4):374-86 [PMID: 21659010]
  54. Medicina (Kaunas). 2019 Jul 27;55(8): [PMID: 31357616]
  55. Cancers (Basel). 2020 Jan 27;12(2): [PMID: 32012717]
  56. Nat Commun. 2021 Feb 9;12(1):896 [PMID: 33563994]
  57. Trends Cancer. 2020 May;6(5):380-391 [PMID: 32348734]
  58. Clin Cancer Res. 2022 May 2;28(9):1881-1895 [PMID: 35417530]
  59. Oncotarget. 2010 Dec;1(8):710-20 [PMID: 21321380]
  60. Int J Cancer. 2020 Mar 1;146(5):1281-1292 [PMID: 31456217]
  61. Curr Med Chem. 2013;20(29):3561-73 [PMID: 23834177]
  62. Acta Neuropathol Commun. 2021 May 21;9(1):95 [PMID: 34020723]
  63. J Med Oncol Ther. 2016;1(2):34-40 [PMID: 28149961]
  64. Expert Rev Neurother. 2015;15(7):741-52 [PMID: 26027432]
  65. Anticancer Res. 2019 Jun;39(6):2855-2860 [PMID: 31177123]
  66. Theranostics. 2015 Jan 01;5(1):12-22 [PMID: 25553095]
  67. Neurol Med Chir (Tokyo). 2018 Oct 15;58(10):405-421 [PMID: 30249919]
  68. Pharmacol Res. 2021 Sep;171:105764 [PMID: 34246782]
  69. Cell Death Differ. 2015 Jan;22(1):34-45 [PMID: 25236394]
  70. Neuro Oncol. 2018 Apr 9;20(5):608-620 [PMID: 29036500]
  71. Oncotarget. 2015 Apr 10;6(10):8353-65 [PMID: 25823657]
  72. Bioorg Med Chem. 2022 Jan 1;53:116533 [PMID: 34863065]
  73. Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):20047-52 [PMID: 23169640]
  74. Oncotarget. 2016 Aug 2;7(31):50229-50238 [PMID: 27384876]
  75. Neurosurg Clin N Am. 2021 Apr;32(2):283-289 [PMID: 33781508]
  76. Cell Rep. 2016 Jul 12;16(2):457-471 [PMID: 27346347]
  77. Br J Cancer. 2013 Apr 30;108(8):1648-58 [PMID: 23558898]
  78. Signal Transduct Target Ther. 2022 Dec 29;7(1):402 [PMID: 36581622]
  79. Cell Death Dis. 2021 Jan 18;12(1):89 [PMID: 33462212]
  80. Cell Death Dis. 2020 Sep 15;11(9):758 [PMID: 32934196]
  81. Brain Tumor Res Treat. 2014 Apr;2(1):7-21 [PMID: 24926467]
  82. Genes (Basel). 2023 May 12;14(5): [PMID: 37239435]
  83. Front Cell Dev Biol. 2022 Jan 12;9:778345 [PMID: 35096813]
  84. Cancers (Basel). 2019 Jun 21;11(6): [PMID: 31234336]
  85. Int J Mol Sci. 2022 Oct 25;23(21): [PMID: 36361680]
  86. Adv Sci (Weinh). 2020 Mar 12;7(9):1902971 [PMID: 32382477]
  87. Sci Rep. 2014 Jun 20;4:5371 [PMID: 24947819]
  88. Neoplasia. 2020 Dec;22(12):800-808 [PMID: 33142244]
  89. Oncol Lett. 2016 Oct;12(4):2992-2998 [PMID: 27698888]
  90. Neuro Oncol. 2022 Aug 1;24(8):1261-1272 [PMID: 35231103]
  91. Cancer Lett. 2018 Oct 1;433:210-220 [PMID: 30008386]
  92. Mol Cancer. 2020 Feb 10;19(1):28 [PMID: 32039732]
  93. Mol Cancer. 2011 Sep 30;10:124 [PMID: 21962230]
  94. J Cell Biochem. 2019 Apr;120(4):6698-6708 [PMID: 30506951]
  95. Cell Death Dis. 2022 May 2;13(5):426 [PMID: 35501306]
  96. Stem Cell Res Ther. 2021 Mar 24;12(1):206 [PMID: 33762015]
  97. EMBO Rep. 2018 Nov;19(11): [PMID: 30213795]
  98. Int J Oncol. 2018 Dec;53(6):2758-2768 [PMID: 30272277]
  99. Clin Epigenetics. 2020 Mar 17;12(1):47 [PMID: 32183903]
  100. Signal Transduct Target Ther. 2019 Dec 17;4:62 [PMID: 31871779]
  101. Virchows Arch. 2021 Nov;479(5):987-996 [PMID: 34165590]
  102. J Exp Clin Cancer Res. 2017 Aug 1;36(1):100 [PMID: 28764788]
  103. Cancers (Basel). 2019 Apr 30;11(5): [PMID: 31052265]
  104. Nat Commun. 2015 Jun 11;6:7391 [PMID: 26067104]
  105. Pharmgenomics Pers Med. 2022 Mar 10;15:177-193 [PMID: 35300057]
  106. Cells. 2019 Feb 16;8(2): [PMID: 30781493]
  107. Cancer Cell Int. 2020 Mar 30;20:101 [PMID: 32256210]
  108. Signal Transduct Target Ther. 2022 Feb 9;7(1):37 [PMID: 35136034]
  109. Sci Rep. 2015 Mar 20;5:9087 [PMID: 25791281]
  110. Oncol Rep. 2017 Jun;37(6):3387-3396 [PMID: 28440504]
  111. Cancer Res. 2011 Sep 1;71(17):5859-70 [PMID: 21724586]
  112. Clin Cancer Res. 2014 Nov 15;20(22):5808-22 [PMID: 25224277]
  113. Biochim Biophys Acta Rev Cancer. 2021 Dec;1876(2):188616 [PMID: 34419533]
  114. Brain Res. 2018 Aug 1;1692:154-162 [PMID: 29782850]

MeSH Term

Humans
Glioblastoma
DNA Methylation
Gene Expression Regulation, Neoplastic
MicroRNAs
Epigenesis, Genetic

Chemicals

MicroRNAs

Word Cloud

Created with Highcharts 10.0.0epigenetictumormolecularchangesglioblastomacellGlioblastomabraingeneticDNAalterationstumor-relatedwillregulationmodificationsnon-codingmiRNAsGBMprimaryarisingglialcellshighlyaggressivereasonbecomedeadliesttypepoorestprognosisLikecancerscompromisesalterationlevelsEpigeneticsrefersgeneexpressioncellularphenotypewithoutoccurrencemutationssequencedrivergenesreversiblemakingconvenienttargetscancertherapyThereforeaimreviewcriticaldysregulationprocesseshighlightsignificantaffectedpathwaysoutcomescycleprogressiongrowthapoptosisangiogenesisinvasivenessimmuneevasionacquirementdrugresistanceExamplesinducedhistonepost-translationalPTMsRNAncRNAhighlightedunderstandingroleregulatorsunderlyingmechanismsoverallpro-tumorigeniclandscapeessentialliteraturestudyprovidevaluableinsightsestablishingprognosticdiagnosticvaluevarioustranscriptsincludingRoleNon-CodingRNAsEpigeneticDysregulationDevelopmentepigeneticsncRNAs

Similar Articles

Cited By