Rapid Detection and Quantification of Viable Cells of Using Propidium Monoazide Combined with Real-Time PCR.

Junhui Li, Ruxing Chen, Ruwei Yang, Xinchen Wei, Hua Xie, Yanxia Shi, Xuewen Xie, Ali Chai, Tengfei Fan, Baoju Li, Lei Li
Author Information
  1. Junhui Li: State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
  2. Ruxing Chen: State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
  3. Ruwei Yang: Comprehensive Experimental Farm, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
  4. Xinchen Wei: State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
  5. Hua Xie: Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
  6. Yanxia Shi: State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
  7. Xuewen Xie: State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
  8. Ali Chai: State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
  9. Tengfei Fan: State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China. ORCID
  10. Baoju Li: State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
  11. Lei Li: State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China. ORCID

Abstract

() has caused significant economic losses in major vegetable production areas in Northern China by causing bacterial soft rot in cash crops such as potatoes and cucumbers. This study aimed to establish a PMA-qPCR detection method for by screening specific and sensitive primers based on the gene and the conserved region of the 23S rRNA gene. Based on the optimized PMA pretreatment conditions, a standard curve was designed and constructed for PMA-qPCR detection (y = -3.391x + 36.28; R = 0.99). The amplification efficiency reached 97%, and the lowest detection limit of viable cells was approximately 2 × 10 CFU·mL. The feasibility of the PMA-qPCR method was confirmed through a manually simulated viable/dead cell assay under various concentrations. The analysis of potato tubers and cucumber seeds revealed that nine naturally collected seed samples contained a range from 10 to 10 CFU·g viable bacteria. Furthermore, the system effectively identified changes in the number of pathogenic bacteria in cucumber and potato leaves affected by soft rot throughout the disease period. Overall, the detection and prevention of bacterial soft rot caused by is crucial.

Keywords

References

  1. J Microbiol Methods. 2006 Nov;67(2):310-20 [PMID: 16753236]
  2. Sci Rep. 2019 May 23;9(1):7738 [PMID: 31123304]
  3. Food Microbiol. 2012 May;30(1):316-20 [PMID: 22265318]
  4. Plants (Basel). 2021 Sep 10;10(9): [PMID: 34579412]
  5. Nat Commun. 2019 Aug 13;10(1):3640 [PMID: 31409785]
  6. Mol Cell Probes. 2002 Apr;16(2):99-110 [PMID: 12030760]
  7. Phytopathology. 2020 Jun;110(6):1174-1179 [PMID: 31107148]
  8. J Microbiol Methods. 2009 Mar;76(3):253-61 [PMID: 19103234]
  9. Appl Environ Microbiol. 2015 Nov;81(22):7767-81 [PMID: 26319874]
  10. Front Microbiol. 2021 Oct 29;12:745144 [PMID: 34777292]
  11. Appl Environ Microbiol. 2019 Oct 1;85(20): [PMID: 31420337]
  12. Mol Plant Pathol. 2020 Jun;21(6):871-891 [PMID: 32267092]
  13. Front Microbiol. 2022 Apr 25;13:801961 [PMID: 35547143]
  14. mSystems. 2020 Jan 28;5(1): [PMID: 31992632]
  15. Front Plant Sci. 2022 Sep 29;13:964092 [PMID: 36247644]
  16. J Microbiol Methods. 2008 Feb;72(2):180-4 [PMID: 18160156]
  17. Annu Rev Phytopathol. 2018 Aug 25;56:269-288 [PMID: 29958075]
  18. Biology (Basel). 2020 Mar 03;9(3): [PMID: 32138156]
  19. Mar Drugs. 2019 Feb 21;17(2): [PMID: 30795579]
  20. Front Nutr. 2022 Jan 31;9:833723 [PMID: 35174200]
  21. Plant Physiol. 2016 May;171(1):25-41 [PMID: 26966172]
  22. Appl Environ Microbiol. 2021 Jan 4;87(2): [PMID: 33158893]
  23. Viruses. 2020 Apr 23;12(4): [PMID: 32340210]
  24. Radiology. 2021 Feb;298(2):E81-E87 [PMID: 32870139]
  25. Plant Dis. 2022 May;106(5):1474-1485 [PMID: 34894749]
  26. PLoS One. 2012;7(8):e42036 [PMID: 22870280]
  27. J Appl Microbiol. 2004;96(3):535-45 [PMID: 14962133]
  28. Plant Pathol J. 2014 Jun;30(2):117-24 [PMID: 25288994]
  29. J Appl Microbiol. 2022 May;132(5):3717-3734 [PMID: 35138009]
  30. RNA. 2019 Dec;25(12):1806-1813 [PMID: 31551299]
  31. mSystems. 2021 Oct 26;6(5):e0059121 [PMID: 34698548]
  32. Plant Pathol J. 2022 Dec;38(6):656-664 [PMID: 36503194]
  33. Viruses. 2018 Nov 10;10(11): [PMID: 30423804]
  34. Sci Rep. 2019 Oct 29;9(1):15796 [PMID: 31659171]
  35. Plant Dis. 2017 Feb;101(2):279-287 [PMID: 30681927]
  36. Int J Food Microbiol. 2013 Aug 1;165(3):214-20 [PMID: 23796654]
  37. Biology (Basel). 2021 Nov 05;10(11): [PMID: 34827129]
  38. Plant Dis. 2013 Sep;97(9):1158-1167 [PMID: 30722419]
  39. Int J Mol Sci. 2021 Dec 24;23(1): [PMID: 35008632]

Grants

  1. 2022B02044-1/Research and application of potato germplasm resources innovation and breeding technology of detoxified seed potato in Xinjiang
  2. CAAS-ASTIP-IVFCAAS/the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sci-ences
  3. IVF2023/the Key Laboratory of Horticultural Crops Genetic Improvement, Ministry of Agriculture in China

Word Cloud

Created with Highcharts 10.0.0detectionsoftrotPMA-qPCRbacterialviable10causedmethodgene=cellpotatocucumberbacteriasignificanteconomiclossesmajorvegetableproductionareasNorthernChinacausingcashcropspotatoescucumbersstudyaimedestablishscreeningspecificsensitiveprimersbasedconservedregion23SrRNABasedoptimizedPMApretreatmentconditionsstandardcurvedesignedconstructedy-3391x+3628R099amplificationefficiencyreached97%lowestlimitcellsapproximately2×CFU·mLfeasibilityconfirmedmanuallysimulatedviable/deadassayvariousconcentrationsanalysistubersseedsrevealedninenaturallycollectedseedsamplescontainedrangeCFU·gFurthermoresystemeffectivelyidentifiedchangesnumberpathogenicleavesaffectedthroughoutdiseaseperiodOverallpreventioncrucialRapidDetectionQuantificationViableCellsUsingPropidiumMonoazideCombinedReal-TimePCRPectobacteriumbrasiliense

Similar Articles

Cited By (2)