Relation between Halogen Bond Strength and IR and NMR Spectroscopic Markers.

Akhtam Amonov, Steve Scheiner
Author Information
  1. Akhtam Amonov: Department of Optics and Spectroscopy, Engineering Physics Institute, Samarkand State University, University blv. 15, Samarkand 140104, Uzbekistan. ORCID
  2. Steve Scheiner: Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA. ORCID

Abstract

The relationship between the strength of a halogen bond (XB) and various IR and NMR spectroscopic quantities is assessed through DFT calculations. Three different Lewis acids place a Br or I atom on a phenyl ring; each is paired with a collection of N and O bases of varying electron donor power. The weakest of the XBs display a C-X bond contraction coupled with a blue shift in the associated frequency, whereas the reverse trends occur for the stronger bonds. The best correlations with the XB interaction energy are observed with the NMR shielding of the C atom directly bonded to X and the coupling constants involving the C-X bond and the C-H/F bond that lies ortho to the X substituent, but these correlations are not accurate enough for the quantitative assessment of energy. These correlations tend to improve as the Lewis acid becomes more potent, which makes for a wider range of XB strengths.

Keywords

References

  1. Phys Chem Chem Phys. 2013 Oct 21;15(39):16442-5 [PMID: 23963511]
  2. J Phys Chem A. 2020 Sep 24;124(38):7716-7725 [PMID: 32900206]
  3. Phys Chem Chem Phys. 2023 Sep 13;25(35):23530-23537 [PMID: 37656119]
  4. J Chem Phys. 2012 Apr 14;136(14):141101 [PMID: 22502493]
  5. Chem Commun (Camb). 2019 Jan 29;55(10):1506-1509 [PMID: 30648173]
  6. Chemistry. 2013 Sep 2;19(36):11949-62 [PMID: 23893705]
  7. J Mol Model. 2007 Feb;13(2):291-6 [PMID: 16927107]
  8. J Chem Inf Model. 2020 Mar 23;60(3):1317-1328 [PMID: 32003997]
  9. Chem Asian J. 2023 Mar 14;18(6):e202201221 [PMID: 36688875]
  10. J Phys Chem A. 2023 Aug 3;127(30):6292-6299 [PMID: 37490696]
  11. Molecules. 2019 Dec 02;24(23): [PMID: 31810199]
  12. Phys Chem Chem Phys. 2012 Oct 28;14(40):14061-6 [PMID: 22990326]
  13. Chemistry. 2021 Nov 5;27(62):15472-15478 [PMID: 34546600]
  14. J Phys Chem A. 2021 Jun 17;125(23):5069-5077 [PMID: 34080865]
  15. J Am Chem Soc. 2002 Jan 23;124(3):370-1 [PMID: 11792195]
  16. Molecules. 2019 Sep 12;24(18): [PMID: 31547416]
  17. J Phys Chem A. 2021 Oct 28;125(42):9377-9393 [PMID: 34661411]
  18. J Phys Chem A. 2007 Oct 4;111(39):9699-706 [PMID: 17760431]
  19. J Chem Theory Comput. 2013 Apr 9;9(4):1918-31 [PMID: 26583543]
  20. Chemphyschem. 2015 Apr 7;16(5):978-85 [PMID: 25688988]
  21. Phys Chem Chem Phys. 2023 Jan 27;25(4):2907-2915 [PMID: 36636920]
  22. Phys Chem Chem Phys. 2022 May 18;24(19):11713-11720 [PMID: 35506511]
  23. Faraday Discuss. 2017 Oct 13;203:213-226 [PMID: 28730190]
  24. J Chem Theory Comput. 2013 Oct 8;9(10):4453-61 [PMID: 26589163]
  25. Angew Chem Int Ed Engl. 2014 Sep 15;53(38):10139-42 [PMID: 25066639]
  26. Phys Chem Chem Phys. 2015 Feb 7;17(5):3261-72 [PMID: 25521698]
  27. Molecules. 2019 Aug 02;24(15): [PMID: 31382402]
  28. ACS Omega. 2023 Jun 05;8(24):21531-21539 [PMID: 37360450]
  29. J Org Chem. 2005 Feb 4;70(3):802-8 [PMID: 15675835]
  30. Int J Mol Sci. 2022 Sep 25;23(19): [PMID: 36232589]
  31. J Phys Chem A. 2019 Jul 25;123(29):6194-6209 [PMID: 31294556]
  32. Chemphyschem. 2022 Mar 18;23(6):e202200011 [PMID: 35099849]
  33. J Phys Chem A. 2013 Nov 27;117(47):12590-600 [PMID: 24147965]
  34. J Am Chem Soc. 2015 Sep 23;137(37):12110-20 [PMID: 26329271]
  35. Phys Chem Chem Phys. 2022 Jun 22;24(24):14794-14804 [PMID: 35687357]
  36. Chem Rev. 2016 Feb 24;116(4):2478-601 [PMID: 26812185]
  37. Inorg Chem. 2019 Dec 2;58(23):16227-16235 [PMID: 31718176]
  38. J Phys Chem A. 2016 Sep 8;120(35):7020-9 [PMID: 27525985]
  39. Phys Chem Chem Phys. 2014 Jun 7;16(21):9987-96 [PMID: 24477636]
  40. Phys Chem Chem Phys. 2014 Feb 14;16(6):2430-42 [PMID: 24358473]
  41. Chemphyschem. 2017 May 19;18(10):1267-1273 [PMID: 28247539]
  42. J Mol Model. 2012 Feb;18(2):541-8 [PMID: 21541742]
  43. J Org Chem. 2004 Feb 6;69(3):660-4 [PMID: 14750789]
  44. Chemistry. 2018 Aug 6;24(44):11364-11376 [PMID: 29852060]
  45. J Chem Phys. 2011 Jun 14;134(22):224303 [PMID: 21682510]
  46. ChemistryOpen. 2019 Sep 12;8(11):1328-1336 [PMID: 31692837]
  47. J Phys Chem B. 2014 Jul 17;118(28):8257-63 [PMID: 24739053]
  48. J Chem Theory Comput. 2014 Apr 8;10(4):1563-1575 [PMID: 24803867]
  49. Molecules. 2023 Jan 12;28(2): [PMID: 36677828]
  50. Phys Chem Chem Phys. 2021 Mar 18;23(10):5702-5717 [PMID: 33645605]
  51. J Chem Theory Comput. 2011 Jan 11;7(1):88-96 [PMID: 26606221]
  52. Chemphyschem. 2016 Jun 3;17(11):1608-14 [PMID: 26972801]
  53. Chemphyschem. 2012 Apr 23;13(6):1411-4 [PMID: 22378691]
  54. J Am Chem Soc. 2006 Mar 1;128(8):2666-74 [PMID: 16492053]
  55. J Comput Chem. 2003 Apr 15;24(5):623-31 [PMID: 12632477]
  56. J Am Chem Soc. 2021 Jul 21;143(28):10695-10699 [PMID: 34236837]
  57. J Phys Chem A. 2011 Nov 24;115(46):13724-31 [PMID: 22047040]
  58. Chemistry. 2016 Nov 14;22(47):16819-16828 [PMID: 27709719]
  59. Chemistry. 2003 Jun 16;9(12):2676-83 [PMID: 12772282]
  60. J Phys Chem A. 2013 Aug 29;117(34):8238-50 [PMID: 23947570]
  61. Chemistry. 2020 Apr 6;26(20):4599-4606 [PMID: 31943433]

Grants

  1. 1954310/National Science Foundation

Word Cloud

Created with Highcharts 10.0.0bondXBNMRshiftcorrelationsIRLewisatomC-XblueenergyXcouplingrelationshipstrengthhalogenvariousspectroscopicquantitiesassessedDFTcalculationsThreedifferentacidsplaceBrphenylringpairedcollectionNObasesvaryingelectrondonorpowerweakestXBsdisplaycontractioncoupledassociatedfrequencywhereasreversetrendsoccurstrongerbondsbestinteractionobservedshieldingCdirectlybondedconstantsinvolvingC-H/FliesorthosubstituentaccurateenoughquantitativeassessmenttendimproveacidbecomespotentmakeswiderrangestrengthsRelationHalogenBondStrengthSpectroscopicMarkersAIMchemicalconstant

Similar Articles

Cited By