Characterization of Two Aggressive PepMV Isolates Useful in Breeding Programs.

Cristina Alcaide, Eduardo Méndez-López, Jesús R Úbeda, Pedro Gómez, Miguel A Aranda
Author Information
  1. Cristina Alcaide: "Del Segura" Centre for Applied Biology (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), 30100 Murcia, Spain. ORCID
  2. Eduardo Méndez-López: "Del Segura" Centre for Applied Biology (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), 30100 Murcia, Spain.
  3. Jesús R Úbeda: "Del Segura" Centre for Applied Biology (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), 30100 Murcia, Spain.
  4. Pedro Gómez: "Del Segura" Centre for Applied Biology (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), 30100 Murcia, Spain. ORCID
  5. Miguel A Aranda: "Del Segura" Centre for Applied Biology (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), 30100 Murcia, Spain. ORCID

Abstract

Pepino mosaic virus (PepMV) causes significant economic losses in tomato crops worldwide. Since its first detection infecting tomato in 1999, aggressive PepMV variants have emerged. This study aimed to characterize two aggressive PepMV isolates, PepMV-H30 and PepMV-KLP2. Both isolates were identified in South-Eastern Spain infecting tomato plants, which showed severe symptoms, including bright yellow mosaics. Full-length infectious clones were generated, and phylogenetic relationships were inferred using their nucleotide sequences and another 35 full-length sequences from isolates representing the five known PepMV strains. Our analysis revealed that PepMV-H30 and PepMV-KLP2 belong to the EU and CH2 strains, respectively. Amino acid sequence comparisons between these and mild isolates identified 8 and 15 amino acid substitutions for PepMV-H30 and PepMV-KLP2, respectively, potentially involved in severe symptom induction. None of the substitutions identified in PepMV-H30 have previously been described as symptom determinants. The E236K substitution, originally present in the PepMV-H30 CP, was introduced into a mild PepMV-EU isolate, resulting in a virus that causes symptoms similar to those induced by the parental PepMV-H30 in plants. In silico analyses revealed that this residue is located at the C-terminus of the CP and is solvent-accessible, suggesting its potential involvement in CP-host protein interactions. We also examined the subcellular localization of PepGFPm2 in comparison to that of PepGFPm2, focusing on chloroplast affection, but no differences were observed in the GFP subcellular distribution between the two viruses in epidermal cells of plants. Due to the easily visible symptoms that PepMV-H30 and PepMV-KLP2 induce, these isolates represent valuable tools in programs designed to breed resistance to PepMV in tomato.

Keywords

References

  1. Arch Virol. 2002 Oct;147(10):2009-15 [PMID: 12376761]
  2. J Mol Evol. 1997 Jan;44(1):81-8 [PMID: 9010139]
  3. Phytopathology. 2000 Oct;90(10):1068-72 [PMID: 18944468]
  4. Phytopathology. 2016 Apr;106(4):395-406 [PMID: 26667188]
  5. J Virol. 2014 Mar;88(6):3359-68 [PMID: 24390328]
  6. Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10037-41 [PMID: 11517324]
  7. Virus Res. 2011 Jul;159(1):57-61 [PMID: 21536084]
  8. Plant Methods. 2019 May 28;15:58 [PMID: 31149024]
  9. Plant Dis. 2000 Jan;84(1):103 [PMID: 30841211]
  10. J Virol. 2009 Dec;83(23):12378-87 [PMID: 19759144]
  11. Mol Plant Microbe Interact. 2010 Jul;23(7):903-14 [PMID: 20521953]
  12. Virus Genes. 2013 Jun;46(3):517-23 [PMID: 23463175]
  13. Mol Plant Pathol. 2015 Apr;16(3):308-15 [PMID: 25131553]
  14. Mol Plant Microbe Interact. 2010 Apr;23(4):376-83 [PMID: 20192825]
  15. PLoS Pathog. 2017 Apr 7;13(4):e1006319 [PMID: 28388677]
  16. BMC Evol Biol. 2017 Mar 6;17(1):67 [PMID: 28264646]
  17. Front Microbiol. 2016 Oct 04;7:1565 [PMID: 27757106]
  18. Virus Res. 2012 Jan;163(1):28-39 [PMID: 21884738]
  19. Nucleic Acids Res. 2021 Jul 2;49(W1):W559-W566 [PMID: 34019657]
  20. Nat Protoc. 2010 Apr;5(4):725-38 [PMID: 20360767]
  21. Methods Mol Biol. 1998;81:131-43 [PMID: 9760500]
  22. Plant Dis. 2006 Aug;90(8):1106 [PMID: 30781310]
  23. Front Microbiol. 2021 Jul 06;12:694492 [PMID: 34295323]
  24. Adv Virus Res. 2012;84:505-32 [PMID: 22682177]
  25. Virology. 2014 Mar;452-453:264-78 [PMID: 24606704]
  26. J Gen Virol. 2003 Jun;84(Pt 6):1351-1366 [PMID: 12771402]
  27. Nat Methods. 2015 Jan;12(1):7-8 [PMID: 25549265]
  28. J Virol Methods. 2015 Sep 15;222:11-5 [PMID: 25986144]
  29. BMC Bioinformatics. 2008 Jan 23;9:40 [PMID: 18215316]
  30. Virus Res. 2023 May;329:199100 [PMID: 36948229]
  31. Phytopathology. 2002 Aug;92(8):842-9 [PMID: 18942962]
  32. PLoS One. 2014 Sep 26;9(9):e108277 [PMID: 25259891]
  33. Sci Rep. 2016 Jun 29;6:28743 [PMID: 27353522]
  34. Mol Plant Pathol. 2010 Mar;11(2):179-89 [PMID: 20447268]
  35. Nucleic Acids Res. 2009 Nov;37(20):6984-90 [PMID: 19745056]
  36. Front Plant Sci. 2018 Dec 06;9:1810 [PMID: 30574159]
  37. Plant Biotechnol J. 2023 Oct;21(10):2140-2154 [PMID: 37448155]
  38. J Gen Virol. 2016 Aug;97(8):1739-1754 [PMID: 27312096]
  39. Mol Plant Pathol. 2016 Jan;17(1):120-6 [PMID: 25787776]
  40. Int J Mol Sci. 2018 Sep 03;19(9): [PMID: 30177671]
  41. Parasitology. 1982 Oct;85 (Pt 2):411-26 [PMID: 6755367]
  42. Elife. 2015 Dec 16;4:e11795 [PMID: 26673077]
  43. Philos Trans R Soc Lond B Biol Sci. 2010 Jun 27;365(1548):1907-18 [PMID: 20478886]
  44. Mol Plant Microbe Interact. 2014 Dec;27(12):1356-69 [PMID: 25162316]
  45. New Phytol. 2023 Apr;238(1):332-348 [PMID: 36631978]
  46. Virology. 2001 Sep 15;288(1):18-28 [PMID: 11543654]
  47. Phytopathology. 2006 Mar;96(3):274-9 [PMID: 18944442]
  48. Plant Dis. 2008 Dec;92(12):1683-1688 [PMID: 30764290]
  49. Micron. 2015 Dec;79:84-92 [PMID: 26369497]
  50. Plant Physiol. 1989 Jan;89(1):111-6 [PMID: 16666500]
  51. Phytopathology. 2020 Jan;110(1):49-57 [PMID: 31524081]
  52. Genetics. 1998 Apr;148(4):1667-86 [PMID: 9560386]
  53. J Cell Biol. 2013 Jun 24;201(7):981-95 [PMID: 23798728]
  54. Mol Biol Evol. 2016 Jul;33(7):1870-4 [PMID: 27004904]
  55. Mol Plant Pathol. 2013 Dec;14(9):923-33 [PMID: 23855964]
  56. Phytopathology. 2008 Dec;98(12):1340-5 [PMID: 19000010]
  57. Biochem Biophys Res Commun. 2012 Jan 6;417(1):451-6 [PMID: 22166218]

Grants

  1. PLEC2021-007715/Ministerio de Ciencia e Innovación
  2. PID2021-125010OB-I00/Ministerio de Ciencia e Innovación

MeSH Term

Phylogeny
Plant Breeding
Amino Acid Sequence
Potexvirus
Solanum lycopersicum
Plant Diseases

Word Cloud

Created with Highcharts 10.0.0PepMVPepMV-H30isolatestomatoPepMV-KLP2virusidentifiedplantssymptomsstrainssymptommosaiccausesinfectingaggressivetwoseverebrightyellowsequencesrevealedrespectivelyacidmildsubstitutionsinductionCPproteinsubcellularPepGFPm2PepinosignificanteconomiclossescropsworldwideSincefirstdetection1999variantsemergedstudyaimedcharacterizeSouth-EasternSpainshowedincludingmosaicsFull-lengthinfectiousclonesgeneratedphylogeneticrelationshipsinferredusingnucleotideanother35full-lengthrepresentingfiveknownanalysisbelongEUCH2Aminosequencecomparisons815aminopotentiallyinvolvedNonepreviouslydescribeddeterminantsE236KsubstitutionoriginallypresentintroducedPepMV-EUisolateresultingsimilarinducedparentalsilicoanalysesresiduelocatedC-terminussolvent-accessiblesuggestingpotentialinvolvementCP-hostinteractionsalsoexaminedlocalizationcomparisonfocusingchloroplastaffectiondifferencesobservedGFPdistributionvirusesepidermalcellsDueeasilyvisibleinducerepresentvaluabletoolsprogramsdesignedbreedresistanceCharacterizationTwoAggressiveIsolatesUsefulBreedingProgramscoatmutationevolution

Similar Articles

Cited By

No available data.