Beta-spike-containing boosters induce robust and functional antibody responses to SARS-CoV-2 in macaques primed with distinct vaccines.

Yixiang Deng, Caroline Atyeo, Dansu Yuan, Taras M Chicz, Timothy Tibbitts, Matthew Gorman, Sabian Taylor, Valerie Lecouturier, Douglas A Lauffenburger, Roman M Chicz, Galit Alter, Ryan P McNamara
Author Information
  1. Yixiang Deng: Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Massachusetts Institute of Technology, Cambridge, MA, USA.
  2. Caroline Atyeo: Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
  3. Dansu Yuan: Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
  4. Taras M Chicz: Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
  5. Timothy Tibbitts: Sanofi, Cambridge, MA, USA.
  6. Matthew Gorman: Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
  7. Sabian Taylor: Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
  8. Valerie Lecouturier: Sanofi, Marcy l'Etoile, France.
  9. Douglas A Lauffenburger: Massachusetts Institute of Technology, Cambridge, MA, USA.
  10. Roman M Chicz: Sanofi, Waltham, MA, USA.
  11. Galit Alter: Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
  12. Ryan P McNamara: Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA. Electronic address: rpmcnamara@mgh.harvard.edu.

Abstract

The reduced effectiveness of COVID-19 vaccines due to the emergence of variants of concern (VOCs) necessitated the use of vaccine boosters to bolster protection against disease. However, it remains unclear how boosting expands protective breadth when primary vaccine platforms are distinct and how boosters containing VOC spike(s) broaden humoral responses. Here, we report that boosters composed of recombinant spike antigens of ancestral (prototype) and Beta VOCs elicit a robust, pan-VOC, and multi-functional humoral response in non-human primates largely independent of the primary vaccine series platform. Interestingly, Beta-spike-containing boosters stimulate immunoglobulin A (IgA) with a greater breadth of recognition in protein-primed recipients when administered with adjuvant system 03 (AS03). Our results highlight the utility of a component-based booster strategy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for broad humoral recognition, independent of primary vaccine series. This is of high global health importance given the heterogeneity of primary vaccination platforms distributed.

Keywords

References

  1. Cell Discov. 2021 Sep 7;7(1):82 [PMID: 34493710]
  2. Nat Commun. 2022 Oct 2;13(1):5794 [PMID: 36184631]
  3. Front Immunol. 2020 Jul 21;11:1817 [PMID: 32793245]
  4. Clin Infect Dis. 2022 Aug 24;75(1):e822-e826 [PMID: 34915551]
  5. Sci Transl Med. 2021 Aug 18;13(607): [PMID: 34315825]
  6. J Immunol Methods. 2019 Oct;473:112630 [PMID: 31301278]
  7. Mucosal Immunol. 2011 Nov;4(6):603-11 [PMID: 21975936]
  8. J Clin Invest. 2020 Feb 3;130(2):662-672 [PMID: 31845904]
  9. Lancet. 2022 Feb 5;399(10324):521-529 [PMID: 35074136]
  10. Lancet. 2018 Jul 21;392(10143):232-243 [PMID: 30047376]
  11. Lancet. 2021 Dec 18;398(10318):2258-2276 [PMID: 34863358]
  12. Nat Commun. 2022 Mar 31;13(1):1699 [PMID: 35361754]
  13. NPJ Vaccines. 2023 Mar 8;8(1):34 [PMID: 36890168]
  14. Infez Med. 2020 Ahead of print Jun 1;28(2):174-184 [PMID: 32275259]
  15. BMJ. 2022 Mar 9;376:e069761 [PMID: 35264324]
  16. Cell. 2023 Jan 19;186(2):279-286.e8 [PMID: 36580913]
  17. Immunol Rev. 2017 Jan;275(1):262-270 [PMID: 28133810]
  18. Nature. 2022 Feb;602(7898):671-675 [PMID: 35016199]
  19. Nature. 2021 Jun;594(7862):253-258 [PMID: 33873199]
  20. Nat Rev Immunol. 2022 Jan;22(1):57-65 [PMID: 34876702]
  21. Nat Commun. 2023 Feb 14;14(1):824 [PMID: 36788246]
  22. Sci Transl Med. 2022 May 18;14(645):eabm2311 [PMID: 35348368]
  23. Nat Med. 2022 Mar;28(3):481-485 [PMID: 35051990]
  24. Sci Rep. 2021 Apr 23;11(1):8810 [PMID: 33893359]
  25. J Immunol Methods. 2011 Mar 7;366(1-2):8-19 [PMID: 21192942]
  26. Nat Commun. 2023 Mar 10;14(1):1309 [PMID: 36894558]
  27. Nat Med. 2022 Sep;28(9):1785-1790 [PMID: 35760080]
  28. Cell. 2020 May 28;181(5):1004-1015.e15 [PMID: 32375025]
  29. J Infect Dis. 2022 Nov 11;226(10):1717-1720 [PMID: 35723970]
  30. Sci Transl Med. 2022 Apr 27;14(642):eabn9243 [PMID: 35289637]
  31. N Engl J Med. 2022 Jul 28;387(4):374-376 [PMID: 35767474]
  32. J Immunol Methods. 2017 Apr;443:33-44 [PMID: 28163018]
  33. mBio. 2022 Oct 26;13(5):e0164722 [PMID: 36000735]
  34. Sci Immunol. 2021 Dec 03;6(66):eabf1152 [PMID: 34860581]
  35. J Immunol. 2014 Mar 1;192(5):2374-83 [PMID: 24493821]
  36. N Engl J Med. 2022 Mar 17;386(11):1088-1091 [PMID: 35081298]
  37. Science. 2020 Aug 21;369(6506):956-963 [PMID: 32540903]
  38. Science. 2020 Nov 27;370(6520):1110-1115 [PMID: 33037066]
  39. Nat Commun. 2021 Feb 24;12(1):1260 [PMID: 33627662]
  40. Nat Med. 2022 Nov;28(11):2388-2397 [PMID: 36202997]
  41. Sci Transl Med. 2021 Oct 27;13(617):eabi8631 [PMID: 34664972]
  42. J Infect Dis. 2022 Oct 17;226(8):1401-1406 [PMID: 35723969]
  43. EClinicalMedicine. 2023 Jul 22;62:102109 [PMID: 37533419]
  44. Cell. 2020 Sep 3;182(5):1295-1310.e20 [PMID: 32841599]
  45. Nature. 2022 Feb;602(7898):657-663 [PMID: 35016194]
  46. Nature. 2020 Aug;584(7821):443-449 [PMID: 32668443]
  47. Lancet Infect Dis. 2023 Jun;23(6):655-656 [PMID: 37148902]
  48. J Immunol Methods. 2019 Aug;471:46-56 [PMID: 31132351]
  49. Nat Commun. 2020 Aug 27;11(1):4303 [PMID: 32855401]
  50. Lancet Infect Dis. 2022 May;22(5):636-648 [PMID: 35090638]
  51. Lancet. 2022 Apr 2;399(10332):1303-1312 [PMID: 35305296]
  52. Sci Transl Med. 2022 Nov 23;14(672):eabn9237 [PMID: 35881018]
  53. N Engl J Med. 2022 Jul 7;387(1):21-34 [PMID: 35704396]
  54. Mol Ther. 2019 Apr 10;27(4):878-889 [PMID: 30879951]
  55. Cell Rep. 2018 Apr 3;23(1):90-99 [PMID: 29617676]
  56. Cell Rep Med. 2021 Sep 21;2(9):100405 [PMID: 34485950]
  57. Cell Rep. 2022 Feb 15;38(7):110368 [PMID: 35123652]
  58. N Engl J Med. 2023 Feb 16;388(7):662-664 [PMID: 36652339]
  59. Sci Transl Med. 2022 Jul 27;14(655):eabn3715 [PMID: 35895836]
  60. Front Genet. 2020 Jul 17;11:783 [PMID: 32765596]

Grants

  1. U19 AI135995/NIAID NIH HHS
  2. R01 AI042790/NIAID NIH HHS
  3. R01 AI146785/NIAID NIH HHS
  4. U19 AI142790/NIAID NIH HHS
  5. P01 AI165072/NIAID NIH HHS
  6. /Wellcome Trust
  7. R01 AI080289/NIAID NIH HHS
  8. U01 CA260476/NCI NIH HHS
  9. R37 AI080289/NIAID NIH HHS

MeSH Term

Animals
Humans
SARS-CoV-2
COVID-19 Vaccines
Macaca
Antibody Formation
COVID-19
Vaccines
Antibodies, Viral
Antibodies, Neutralizing

Chemicals

COVID-19 Vaccines
Vaccines
Antibodies, Viral
Antibodies, Neutralizing

Word Cloud

Created with Highcharts 10.0.0vaccineboostersprimaryhumoralSARS-CoV-2COVID-19vaccinesconcernVOCsbreadthplatformsdistinctspikeresponsesrobustindependentseriesBeta-spike-containingrecognitionboosterreducedeffectivenessdueemergencevariantsnecessitatedusebolsterprotectiondiseaseHoweverremainsunclearboostingexpandsprotectivecontainingVOCsbroadenreportcomposedrecombinantantigensancestralprototypeBetaelicitpan-VOCmulti-functionalresponsenon-humanprimateslargelyplatformInterestinglystimulateimmunoglobulinIgAgreaterprotein-primedrecipientsadministeredadjuvantsystem03AS03resultshighlightutilitycomponent-basedstrategysevereacuterespiratorysyndromecoronavirus2broadhighglobalhealthimportancegivenheterogeneityvaccinationdistributedinducefunctionalantibodymacaquesprimedCP:ImmunologyOmicronmacaquesubunitvariant

Similar Articles

Cited By