Mitochondrial-derived peptides in cardiovascular disease: Novel insights and therapeutic opportunities.

Yang Li, Zhuozhuo Li, Yuanyuan Ren, Ying Lei, Silong Yang, Yuqi Shi, Han Peng, Weijie Yang, Tiantian Guo, Yi Yu, Yuyan Xiong
Author Information
  1. Yang Li: Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China.
  2. Zhuozhuo Li: Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China.
  3. Yuanyuan Ren: Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China.
  4. Ying Lei: School of Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China.
  5. Silong Yang: Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China.
  6. Yuqi Shi: Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China.
  7. Han Peng: Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China.
  8. Weijie Yang: Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China.
  9. Tiantian Guo: Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China.
  10. Yi Yu: Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China; School of Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China. Electronic address: yiyu@nwu.edu.cn.
  11. Yuyan Xiong: Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, 710018 Xi'an, Shaanxi, PR China. Electronic address: yuyan.xiong@nwu.edu.cn.

Abstract

BACKGROUND: Mitochondria-derived peptides (MDPs) represent a recently discovered family of peptides encoded by short open reading frames (ORFs) found within mitochondrial genes. This group includes notable members including humanin (HN), mitochondrial ORF of the 12S rDNA type-c (MOTS-c), and small humanin-like peptides 1-6 (SHLP1-6). MDPs assume pivotal roles in the regulation of diverse cellular processes, encompassing apoptosis, inflammation, and oxidative stress, which are all essential for sustaining cellular viability and normal physiological functions. Their emerging significance extends beyond this, prompting a deeper exploration into their multifaceted roles and potential applications.
AIM OF REVIEW: This review aims to comprehensively explore the biogenesis, various types, and diverse functions of MDPs. It seeks to elucidate the central roles and underlying mechanisms by which MDPs participate in the onset and development of cardiovascular diseases (CVDs), bridging the connections between cell apoptosis, inflammation, and oxidative stress. Furthermore, the review highlights recent advancements in clinical research related to the utilization of MDPs in CVD diagnosis and treatment.
KEY SCIENTIFIC CONCEPTS OF REVIEW: MDPs levels are diminished with aging and in the presence of CVDs, rendering them potential new indicators for the diagnosis of CVDs. Also, MDPs may represent a novel and promising strategy for CVD therapy. In this review, we delve into the biogenesis, various types, and diverse functions of MDPs. We aim to shed light on the pivotal roles and the underlying mechanisms through which MDPs contribute to the onset and advancement of CVDs connecting cell apoptosis, inflammation, and oxidative stress. We also provide insights into the current advancements in clinical research related to the utilization of MDPs in the treatment of CVDs. This review may provide valuable information with MDPs for CVD diagnosis and treatment.

Keywords

References

  1. Peptides. 2020 Dec;134:170399 [PMID: 32889021]
  2. Metabolism. 2010 Mar;59(3):343-9 [PMID: 19800083]
  3. Mol Immunol. 2018 Sep;101:245-250 [PMID: 30029058]
  4. Biochim Biophys Acta Gen Subj. 2022 Feb;1866(2):130048 [PMID: 34728329]
  5. Front Physiol. 2021 Apr 27;12:660068 [PMID: 33986694]
  6. Nutrients. 2020 Mar 03;12(3): [PMID: 32138220]
  7. Redox Biol. 2018 Jun;16:146-156 [PMID: 29502044]
  8. Expert Opin Ther Targets. 2019 Feb;23(2):117-126 [PMID: 30582721]
  9. Angiogenesis. 2020 May;23(2):249-264 [PMID: 31900750]
  10. Brain Res. 2008 Aug 28;1227:12-8 [PMID: 18590709]
  11. World J Cardiol. 2018 Sep 26;10(9):74-86 [PMID: 30344955]
  12. Pediatr Diabetes. 2018 Apr 25;: [PMID: 29691953]
  13. Behav Brain Res. 2013 Jun 15;247:132-9 [PMID: 23538063]
  14. Front Immunol. 2022 Jun 06;13:908831 [PMID: 35734181]
  15. Cell Metab. 2015 Mar 3;21(3):443-54 [PMID: 25738459]
  16. Chem Biol Drug Des. 2007 Nov;70(5):383-92 [PMID: 17927731]
  17. FASEB J. 2002 Aug;16(10):1331-3 [PMID: 12154011]
  18. Diabetes Metab Syndr Obes. 2021 May 24;14:2335-2347 [PMID: 34079312]
  19. Lancet. 2022 Sep 3;400(10354):733-743 [PMID: 36041475]
  20. J Clin Invest. 2022 May 2;132(9): [PMID: 35499074]
  21. J Cell Commun Signal. 2017 Dec;11(4):329-340 [PMID: 28378125]
  22. Circ Res. 2016 Mar 18;118(6):1021-40 [PMID: 26987915]
  23. Cardiovasc Ther. 2017 Oct;35(5): [PMID: 28726291]
  24. Eur J Prev Cardiol. 2019 Dec;26(2_suppl):25-32 [PMID: 31722562]
  25. Korean Circ J. 2010 Jul;40(7):299-305 [PMID: 20664736]
  26. Aging Cell. 2015 Dec;14(6):921-3 [PMID: 26289118]
  27. Biochem Biophys Res Commun. 2013 Oct 18;440(2):197-203 [PMID: 23985350]
  28. Biomed Pharmacother. 2019 Sep;117:109075 [PMID: 31185388]
  29. Nat Rev Cardiol. 2018 Sep;15(9):505-522 [PMID: 30065258]
  30. Biochim Biophys Acta Gen Subj. 2022 Feb;1866(2):130066 [PMID: 34896254]
  31. Br J Pharmacol. 2005 Jun;145(3):323-33 [PMID: 15765100]
  32. Front Genet. 2021 Dec 13;12:685806 [PMID: 35027919]
  33. Mitochondrion. 2018 Jan;38:31-40 [PMID: 28802666]
  34. Mol Cell Biochem. 2003 Dec;254(1-2):83-9 [PMID: 14674685]
  35. Circ Res. 2018 Jun 8;122(12):1722-1740 [PMID: 29880500]
  36. Circ Res. 2009 Jun 5;104(11):1240-52 [PMID: 19498210]
  37. Cardiol J. 2013;20(6):569-76 [PMID: 24338532]
  38. Hum Exp Toxicol. 2022 Jan-Dec;41:9603271221136208 [PMID: 36289015]
  39. Curr Pharm Des. 2014;20(37):5801-10 [PMID: 24533934]
  40. Oncotarget. 2017 Aug 10;8(55):94900-94909 [PMID: 29212276]
  41. Nat Commun. 2021 Jan 20;12(1):470 [PMID: 33473109]
  42. Trends Immunol. 2014 Jun;35(6):262-9 [PMID: 24680647]
  43. Biochem Biophys Res Commun. 2020 May 28;526(2):539-545 [PMID: 32245619]
  44. Biochim Biophys Acta Gen Subj. 2022 Jan;1866(1):130024 [PMID: 34626746]
  45. Eur J Pharmacol. 2023 Aug 15;953:175835 [PMID: 37290680]
  46. Inflamm Res. 2021 Dec;70(10-12):1141-1150 [PMID: 34459932]
  47. Biol Reprod. 2021 Mar 11;104(3):717-730 [PMID: 33330922]
  48. Cardiovasc Res. 2006 Feb 1;69(2):527-35 [PMID: 16336952]
  49. Diabetes Ther. 2019 Jun;10(3):773-789 [PMID: 31004282]
  50. Cardiology. 2021;146(6):781-792 [PMID: 34547747]
  51. J Biochem Mol Toxicol. 2023 Feb;37(2):e23246 [PMID: 36303331]
  52. Biochem Biophys Res Commun. 2004 Nov 5;324(1):255-61 [PMID: 15465011]
  53. Cells. 2018 Aug 13;7(8): [PMID: 30104535]
  54. Eur Rev Med Pharmacol Sci. 2022 Aug;26(16):5676-5682 [PMID: 36066139]
  55. Andrology. 2013 Jul;1(4):651-9 [PMID: 23686888]
  56. Antioxidants (Basel). 2020 Sep 10;9(9): [PMID: 32927924]
  57. Am J Physiol Heart Circ Physiol. 2018 Sep 1;315(3):H634-H643 [PMID: 29775411]
  58. Front Cardiovasc Med. 2022 Aug 03;9:995207 [PMID: 35990953]
  59. Stroke. 2006 Oct;37(10):2613-9 [PMID: 16960089]
  60. J Appl Physiol (1985). 2020 May 1;128(5):1346-1354 [PMID: 32271093]
  61. J Cell Mol Med. 2022 Nov;26(21):5369-5378 [PMID: 36156853]
  62. Biochim Biophys Acta Gen Subj. 2022 Jan;1866(1):130010 [PMID: 34525397]
  63. Zhonghua Nan Ke Xue. 2021 Jun;27(6):553-556 [PMID: 34914298]
  64. ESC Heart Fail. 2019 Dec;6(6):1105-1127 [PMID: 31997538]
  65. Front Endocrinol (Lausanne). 2021 Jun 10;12:683151 [PMID: 34177809]
  66. Int J Cardiol. 2018 Mar 1;254:23-27 [PMID: 29242099]
  67. Brain Res. 2010 Oct 8;1355:189-94 [PMID: 20682300]
  68. Front Immunol. 2022 Sep 02;13:984298 [PMID: 36119052]
  69. J Thromb Thrombolysis. 2020 Apr;49(3):365-376 [PMID: 32052315]
  70. Int J Neurosci. 2021 Jun;131(6):527-535 [PMID: 32408779]
  71. Life Sci. 2012 Sep 4;91(5-6):199-206 [PMID: 22820173]
  72. Sci Rep. 2021 Aug 19;11(1):16916 [PMID: 34413391]
  73. Front Nutr. 2023 Jan 04;9:1060684 [PMID: 36687680]
  74. J Biol Chem. 2019 Dec 13;294(50):19055-19065 [PMID: 31690630]
  75. ACS Omega. 2020 Aug 26;5(35):22039-22045 [PMID: 32923762]
  76. Theranostics. 2021 Jul 25;11(18):8624-8639 [PMID: 34522203]
  77. Int J Cardiol. 2018 Oct 1;268:40 [PMID: 30041797]
  78. Arch Cardiovasc Dis. 2020 Aug - Sep;113(8-9):564-571 [PMID: 32680738]
  79. Int J Mol Sci. 2021 Aug 16;22(16): [PMID: 34445477]
  80. Gut. 2017 Jun;66(6):1138-1153 [PMID: 28314735]
  81. PLoS One. 2016 Oct 26;11(10):e0165150 [PMID: 27783653]
  82. Peptides. 2003 Apr;24(4):585-95 [PMID: 12860203]
  83. Mol Immunol. 2017 Dec;92:151-160 [PMID: 29096170]
  84. Cardiovasc Ther. 2016 Apr;34(2):107-14 [PMID: 26667157]
  85. Am J Physiol Heart Circ Physiol. 2018 Nov 1;315(5):H1127-H1136 [PMID: 30004252]
  86. Nutrients. 2019 Sep 04;11(9): [PMID: 31487802]
  87. Proc Natl Acad Sci U S A. 2001 May 22;98(11):6336-41 [PMID: 11371646]
  88. JACC Basic Transl Sci. 2020 Jun 17;5(7):699-714 [PMID: 32760857]
  89. Arq Bras Cardiol. 2023 Jan 09;120(1):e20220358 [PMID: 36629605]
  90. IUBMB Life. 2018 Jul;70(7):691-699 [PMID: 29999240]
  91. Am J Physiol Cell Physiol. 2001 Apr;280(4):C719-41 [PMID: 11245588]
  92. J Transl Med. 2023 Jan 20;21(1):36 [PMID: 36670507]
  93. Sci Rep. 2018 Sep 21;8(1):14212 [PMID: 30242290]
  94. Circulation. 2021 Mar 16;143(11):1157-1172 [PMID: 33720773]
  95. Sci Rep. 2021 Oct 11;11(1):20077 [PMID: 34635713]
  96. Nat Rev Cardiol. 2018 Dec;15(12):731-743 [PMID: 30115967]
  97. Drug Discov Today. 2018 Apr;23(4):920-929 [PMID: 29499378]
  98. Cardiovasc Ther. 2016 Dec;34(6):404-414 [PMID: 27434747]
  99. Clin Sci (Lond). 2014 Sep;127(5):331-40 [PMID: 24624929]
  100. J Am Coll Cardiol. 2017 Sep 19;70(12):1429-1437 [PMID: 28911506]
  101. J Neurochem. 2003 Jan;84(2):266-72 [PMID: 12558989]
  102. Stroke. 2019 Jun;50(6):1330-1338 [PMID: 31084332]
  103. Cardiovasc Eng Technol. 2022 Oct;13(5):651-661 [PMID: 34859377]
  104. Glob Health Med. 2021 Dec 31;3(6):358-364 [PMID: 35036616]
  105. Neurobiol Aging. 2014 Jul;35(7):1779.e1-4 [PMID: 24524965]
  106. J Food Biochem. 2020 Mar;44(3):e13145 [PMID: 31960481]
  107. Arch Toxicol. 2015 Sep;89(9):1401-38 [PMID: 25708889]
  108. J Biol Chem. 2005 Apr 22;280(16):15825-35 [PMID: 15661735]
  109. Adv Sci (Weinh). 2018 Nov 16;6(2):1800654 [PMID: 30693177]
  110. Diabetes Res Clin Pract. 2014 Dec;106(3):560-6 [PMID: 25451915]
  111. Biochimie. 2003 Dec;85(12):1219-30 [PMID: 14739074]
  112. Cell. 2012 Mar 16;148(6):1145-59 [PMID: 22424226]
  113. Front Endocrinol (Lausanne). 2022 Feb 03;12:808120 [PMID: 35185787]
  114. Cell Rep. 2021 Jul 27;36(4):109447 [PMID: 34320351]
  115. Mol Neurobiol. 2004 Dec;30(3):327-40 [PMID: 15655255]
  116. Oxid Med Cell Longev. 2017;2017:7467962 [PMID: 29204249]
  117. Apoptosis. 2018 Feb;23(2):143-151 [PMID: 29352443]
  118. Bioengineered. 2021 Dec;12(1):5491-5503 [PMID: 34506248]
  119. Neuroscience. 2019 Sep 15;416:198-206 [PMID: 31374230]
  120. Arterioscler Thromb Vasc Biol. 2010 Oct;30(10):1940-8 [PMID: 20651283]
  121. Int J Mol Sci. 2021 Nov 19;22(22): [PMID: 34830358]
  122. Cell Metab. 2018 Sep 4;28(3):516-524.e7 [PMID: 29983246]
  123. PLoS One. 2012;7(2):e31065 [PMID: 22328926]
  124. Bioengineered. 2022 Jan;13(1):345-356 [PMID: 34965184]
  125. Prog Mol Biol Transl Sci. 2014;124:155-88 [PMID: 24751430]
  126. Acta Biochim Biophys Sin (Shanghai). 2023 Feb 25;55(2):285-294 [PMID: 36786072]
  127. Cardiorenal Med. 2020;10(1):42-50 [PMID: 31694019]
  128. Genomics. 2009 Oct;94(4):247-56 [PMID: 19477263]
  129. Am J Physiol Heart Circ Physiol. 2013 Feb 1;304(3):H393-7 [PMID: 23220334]
  130. Biomed Pharmacother. 2021 Jul;139:111708 [PMID: 34243633]
  131. Hum Genet. 2007 May;121(3-4):347-56 [PMID: 17308896]
  132. Angiology. 2010 Jul;61(5):495-503 [PMID: 20211936]
  133. Nat Rev Mol Cell Biol. 2021 May;22(5):307-325 [PMID: 33594280]
  134. J Alzheimers Dis. 2018;61(4):1343-1353 [PMID: 29376862]
  135. Biochem Biophys Res Commun. 2017 Jan 1;482(1):93-99 [PMID: 27815075]
  136. Nat Rev Cardiol. 2023 Apr;20(4):236-247 [PMID: 36316574]
  137. Aging (Albany NY). 2016 Apr;8(4):796-809 [PMID: 27070352]
  138. Exp Ther Med. 2017 Oct;14(4):3926-3934 [PMID: 29043002]
  139. Am J Physiol Renal Physiol. 2019 Nov 1;317(5):F1122-F1131 [PMID: 31432706]
  140. Curr Diabetes Rev. 2005 Feb;1(1):59-63 [PMID: 18220582]
  141. Circ J. 2010 Jan;74(1):93-100 [PMID: 19942783]
  142. Cardiovasc Res. 2010 Nov 1;88(2):360-6 [PMID: 20562421]
  143. Nat Immunol. 2011 Mar;12(3):204-12 [PMID: 21321594]
  144. Atherosclerosis. 2011 Nov;219(1):65-73 [PMID: 21763658]
  145. Mol Biol Cell. 2009 Jun;20(12):2864-73 [PMID: 19386761]
  146. Eur Cardiol. 2021 May 17;16:e20 [PMID: 34093741]
  147. CNS Drug Rev. 2006 Summer;12(2):113-22 [PMID: 16958985]
  148. Curr Atheroscler Rep. 2017 Sep 18;19(11):42 [PMID: 28921056]
  149. J Thromb Haemost. 2005 Aug;3(8):1815-24 [PMID: 16102048]
  150. J Neurosci. 2001 Dec 1;21(23):9235-45 [PMID: 11717357]
  151. Biomolecules. 2018 Aug 23;8(3): [PMID: 30142970]

MeSH Term

Humans
Cardiovascular Diseases
Oxidative Stress
Animals
Mitochondria
Apoptosis
Peptides
Mitochondrial Proteins
Inflammation
Intracellular Signaling Peptides and Proteins

Chemicals

humanin
Peptides
Mitochondrial Proteins
MOTS-c peptide, human
Intracellular Signaling Peptides and Proteins

Word Cloud

Created with Highcharts 10.0.0MDPspeptidesCVDsrolesstressreviewdiverseapoptosisinflammationoxidativefunctionsCVDdiagnosistreatmentMitochondria-derivedrepresentmitochondrialpivotalcellularpotentialOFREVIEW:biogenesisvarioustypesunderlyingmechanismsonsetcardiovasculardiseasescelladvancementsclinicalresearchrelatedutilizationmayprovideinsightsBACKGROUND:recentlydiscoveredfamilyencodedshortopenreadingframesORFsfoundwithingenesgroupincludesnotablemembersincludinghumaninHNORF12SrDNAtype-cMOTS-csmallhumanin-like1-6SHLP1-6assumeregulationprocessesencompassingessentialsustainingviabilitynormalphysiologicalemergingsignificanceextendsbeyondpromptingdeeperexplorationmultifacetedapplicationsAIMaimscomprehensivelyexploreseekselucidatecentralparticipatedevelopmentbridgingconnectionsFurthermorehighlightsrecentKEYSCIENTIFICCONCEPTSlevelsdiminishedagingpresencerenderingnewindicatorsAlsonovelpromisingstrategytherapydelveaimshedlightcontributeadvancementconnectingalsocurrentvaluableinformationMitochondrial-deriveddisease:NoveltherapeuticopportunitiesApoptosisCardiovascularInflammationOxidativeTherapeuticpotentials

Similar Articles

Cited By