Differential genomic effects of four nano-sized and one micro-sized CeO particles on HepG2 cells.

Sheau-Fung Thai, Carlton P Jones, Brian L Robinette, Hongzu Ren, Beena Vallanat, Anna Fisher, Kirk T Kitchin
Author Information
  1. Sheau-Fung Thai: Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709 USA.
  2. Carlton P Jones: Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709 USA.
  3. Brian L Robinette: Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709 USA.
  4. Hongzu Ren: Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709 USA.
  5. Beena Vallanat: Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709 USA.
  6. Anna Fisher: Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709 USA.
  7. Kirk T Kitchin: Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709 USA.

Abstract

The objective of this research was to perform a genomics study of five cerium oxide particles, 4 nano and one micrometer-sized particles which have been studied previously by our group with respect to cytotoxicity, biochemistry and metabolomics. Human liver carcinoma HepG2 cells were exposed to between 0.3 to 300 ug/ml of CeO particles for 72 hours and then total RNA was harvested. Fatty acid accumulation was observed with W4, X5, Z7 and less with Q but not Y6. The gene expression changes in the fatty acid metabolism genes correlated the fatty acid accumulation we detected in the prior metabolomics study for the CeO particles named W4, Y6, Z7 and Q, but not for X5. In particular, the observed genomics effects on fatty acid uptake and fatty acid oxidation offer a possible explanation of why many CeO particles increase cellular free fatty acid concentrations in HepG2 cells. The major genomic changes observed in this study were sirtuin, ubiquitination signaling pathways, NRF2-mediated stress response and mitochondrial dysfunction. The sirtuin pathway was affected by many CeO particle treatments. Sirtuin signaling itself is sensitive to oxidative stress state of the cells and may be an important contributor in CeO particle induced fatty acid accumulation. Ubiquitination pathway regulates many protein functions in the cells, including sirtuin signaling, NRF2 mediated stress, and mitochondrial dysfunction pathways. NRF2-mediated stress response and mitochondrial were reported to be altered in many nanoparticles treated cells. All these pathways may contribute to the fatty acid accumulation in the CeO particle treated cells.

Keywords

References

  1. Free Radic Biol Med. 2001 Jun 1;30(11):1191-212 [PMID: 11368918]
  2. J Nanosci Nanotechnol. 2021 Nov 1;21(11):5414-5428 [PMID: 33980351]
  3. Biomed Res Int. 2013;2013:942916 [PMID: 24027766]
  4. Iran Biomed J. 2016;20(1):1-11 [PMID: 26286636]
  5. Environ Mol Mutagen. 2008 Jun;49(5):399-405 [PMID: 18418868]
  6. Compr Physiol. 2017 Dec 12;8(1):1-8 [PMID: 29357123]
  7. Mol Cell Biol. 2012 Dec;32(24):5022-34 [PMID: 23045395]
  8. Chem Soc Rev. 2015 Aug 7;44(15):5246-64 [PMID: 25955411]
  9. Biochim Biophys Acta Biomembr. 2017 Apr;1859(4):605-618 [PMID: 27693344]
  10. Science. 2011 Nov 11;334(6057):806-9 [PMID: 22076378]
  11. Sci Rep. 2017 Jun 7;7(1):2922 [PMID: 28592868]
  12. Front Physiol. 2012 Mar 30;3:68 [PMID: 22479251]
  13. Dose Response. 2012;10(3):344-54 [PMID: 22942868]
  14. Mol Cell Biol. 2021 Jan 25;41(2): [PMID: 33168699]
  15. Part Fibre Toxicol. 2017 Nov 29;14(1):50 [PMID: 29187207]
  16. Annu Rev Biochem. 2004;73:417-35 [PMID: 15189148]
  17. J Lipid Res. 2010 Nov;51(11):3270-80 [PMID: 20798351]
  18. J Nanosci Nanotechnol. 2021 Oct 1;21(10):5083-5098 [PMID: 33875094]
  19. Science. 2006 Feb 3;311(5761):622-7 [PMID: 16456071]
  20. Int J Nanomedicine. 2018 Nov 09;13:7303-7318 [PMID: 30519016]
  21. J Nanosci Nanotechnol. 2020 Sep 1;20(9):5833-5858 [PMID: 32331190]
  22. J Biochem Mol Toxicol. 2016 Jul;30(7):331-41 [PMID: 26918567]
  23. Nanoscale. 2018 Apr 19;10(15):6971-6980 [PMID: 29610821]
  24. J Biol Chem. 2000 Jun 16;275(24):18527-33 [PMID: 10748014]
  25. J Nanosci Nanotechnol. 2015 Jan;15(1):492-503 [PMID: 26328389]
  26. J Nanosci Nanotechnol. 2019 Nov 1;19(11):6907-6923 [PMID: 31039842]
  27. Cancer Lett. 2019 Aug 1;456:40-48 [PMID: 31055111]
  28. Oncogene. 2020 May;39(22):4450-4464 [PMID: 32361710]
  29. J Biol Chem. 2008 May 16;283(20):13578-85 [PMID: 18353783]
  30. Exp Cell Res. 2017 Dec 1;361(1):63-72 [PMID: 28986066]
  31. J Biomed Res. 2013 Jan;27(1):1-13 [PMID: 23554788]
  32. Am J Physiol Endocrinol Metab. 2005 Jun;288(6):E1195-205 [PMID: 15644454]
  33. Antioxid Redox Signal. 2018 Mar 10;28(8):643-661 [PMID: 28891317]
  34. J Nucleic Acids. 2015;2015:143636 [PMID: 26345522]
  35. Toxicol In Vitro. 2005 Oct;19(7):975-83 [PMID: 16125895]
  36. Annu Rev Public Health. 2009;30:137-50 [PMID: 19705557]
  37. Chem Commun (Camb). 2007 Mar 14;(10):1056-8 [PMID: 17325804]
  38. Nano Lett. 2006 Aug;6(8):1794-807 [PMID: 16895376]
  39. Aging (Albany NY). 2018 Aug 28;10(8):2170-2189 [PMID: 30153657]
  40. Trends Endocrinol Metab. 2014 Mar;25(3):138-45 [PMID: 24388149]
  41. Am J Physiol Endocrinol Metab. 2009 Jul;297(1):E28-37 [PMID: 19066317]
  42. J Nanosci Nanotechnol. 2015 Dec;15(12):9925-37 [PMID: 26682436]
  43. Dose Response. 2010 Aug 12;8(4):501-17 [PMID: 21191487]
  44. Arch Environ Contam Toxicol. 2013 Aug;65(2):224-33 [PMID: 23619766]
  45. J Am Soc Nephrol. 2006 Jul;17(7):1807-19 [PMID: 16738015]
  46. Oncogene. 2005 Apr 18;24(17):2860-70 [PMID: 15838520]
  47. Curr Opin Lipidol. 2013 Apr;24(2):153-9 [PMID: 23241513]
  48. Front Pharmacol. 2012 Feb 28;3:29 [PMID: 22403547]
  49. Oxid Med Cell Longev. 2018 Jun 11;2018:9547613 [PMID: 29991976]
  50. Toxicol Sci. 2012 Jun;127(2):463-73 [PMID: 22430073]
  51. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(1):12-36 [PMID: 19145068]
  52. FEBS Lett. 2011 Sep 16;585(18):2803-9 [PMID: 21624367]
  53. Curr Opin Toxicol. 2016 Dec;1:80-91 [PMID: 28066829]
  54. Cell Div. 2007 Mar 13;2:11 [PMID: 17355622]
  55. Cell Metab. 2014 Apr 1;19(4):712-21 [PMID: 24703702]
  56. Biochem Soc Trans. 1995 Nov;23(4):1013-8 [PMID: 8654672]
  57. Trends Mol Med. 2004 Nov;10(11):549-57 [PMID: 15519281]
  58. Am J Physiol Endocrinol Metab. 2004 Feb;286(2):E201-7 [PMID: 14701665]
  59. Toxicol Lett. 2009 Jun 1;187(2):77-83 [PMID: 19429248]
  60. Int J Mol Sci. 2017 Jan 10;18(1): [PMID: 28075405]
  61. Environ Sci Technol. 2017 Aug 15;51(16):9334-9343 [PMID: 28723108]

Grants

  1. EPA999999/Intramural EPA

Word Cloud

Created with Highcharts 10.0.0acidcellsfattyCeOparticlesaccumulationstressHepG2manysignalingpathwaysstudyobservedsirtuinmitochondrialparticlegenomicsonemetabolomicsW4X5Z7QY6changeseffectsgenomicNRF2-mediatedresponsedysfunctionpathwayoxidativemaynanoparticlestreatedobjectiveresearchperformfiveceriumoxide4nanomicrometer-sizedstudiedpreviouslygrouprespectcytotoxicitybiochemistryHumanlivercarcinomaexposed03300ug/ml72hourstotalRNAharvestedFattylessgeneexpressionmetabolismgenescorrelateddetectedpriornamedparticularuptakeoxidationofferpossibleexplanationincreasecellularfreeconcentrationsmajorubiquitinationaffectedtreatmentsSirtuinsensitivestateimportantcontributorinducedUbiquitinationregulatesproteinfunctionsincludingNRF2mediatedreportedalteredcontributeDifferentialfournano-sizedmicro-sizedCeO2transcriptomics

Similar Articles

Cited By