Evolutionary dynamics of mutants that modify population structure.

Josef Tkadlec, Kamran Kaveh, Krishnendu Chatterjee, Martin A Nowak
Author Information
  1. Josef Tkadlec: Department of Mathematics, Harvard University, Cambridge, MA 02138, USA. ORCID
  2. Kamran Kaveh: Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA.
  3. Krishnendu Chatterjee: Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
  4. Martin A Nowak: Department of Mathematics, Harvard University, Cambridge, MA 02138, USA.

Abstract

Natural selection is usually studied between mutants that differ in reproductive rate, but are subject to the same population structure. Here we explore how natural selection acts on mutants that have the same reproductive rate, but different population structures. In our framework, population structure is given by a graph that specifies where offspring can disperse. The invading mutant disperses offspring on a different graph than the resident wild-type. We find that more densely connected dispersal graphs tend to increase the invader's fixation probability, but the exact relationship between structure and fixation probability is subtle. We present three main results. First, we prove that if both invader and resident are on complete dispersal graphs, then removing a single edge in the invader's dispersal graph reduces its fixation probability. Second, we show that for certain island models higher invader's connectivity increases its fixation probability, but the magnitude of the effect depends on the exact layout of the connections. Third, we show that for lattices the effect of different connectivity is comparable to that of different fitness: for large population size, the invader's fixation probability is either constant or exponentially small, depending on whether it is more or less connected than the resident.

Keywords

Associated Data

figshare | 10.6084/m9.figshare. 16910170

References

  1. J R Soc Interface. 2017 Oct;14(135): [PMID: 28978749]
  2. Nature. 2005 Jan 20;433(7023):312-6 [PMID: 15662424]
  3. PLoS Comput Biol. 2021 Feb 2;17(2):e1008695 [PMID: 33529219]
  4. Genetics. 1997 May;146(1):427-41 [PMID: 9136031]
  5. J Theor Biol. 1994 Sep 7;170(1):95-114 [PMID: 7967636]
  6. J Theor Biol. 2018 Aug 14;451:10-18 [PMID: 29727631]
  7. R Soc Open Sci. 2015 Apr 29;2(4):140465 [PMID: 26064637]
  8. J Theor Biol. 1980 Jan 21;82(2):205-30 [PMID: 7374178]
  9. J Math Biol. 2021 Feb 3;82(3):14 [PMID: 33534054]
  10. Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3490-4 [PMID: 16484371]
  11. PLoS Comput Biol. 2015 Nov 06;11(11):e1004437 [PMID: 26544962]
  12. Phys Rev Lett. 2005 Aug 26;95(9):098104 [PMID: 16197256]
  13. Nature. 2015 Sep 10;525(7568):261-4 [PMID: 26308893]
  14. Nat Commun. 2021 Jun 29;12(1):4009 [PMID: 34188036]
  15. Int J Mol Sci. 2018 Oct 04;19(10): [PMID: 30287763]
  16. Nature. 2017 Apr 13;544(7649):227-230 [PMID: 28355181]
  17. J R Soc Interface. 2023 Nov;20(208):20230355 [PMID: 38016637]
  18. Biol Direct. 2010 Apr 20;5:21 [PMID: 20406439]
  19. PLoS One. 2015 May 14;10(5):e0126484 [PMID: 25974182]
  20. Proc Biol Sci. 2019 Jun 26;286(1905):20190900 [PMID: 31238846]
  21. J Theor Biol. 2007 Jun 21;246(4):681-94 [PMID: 17350049]
  22. J Math Biol. 2003 Dec;47(6):483-517 [PMID: 14618377]
  23. PLoS Comput Biol. 2020 Jan 17;16(1):e1007494 [PMID: 31951609]
  24. Annu Rev Cell Dev Biol. 2006;22:287-309 [PMID: 16824016]
  25. Matrix Biol. 2018 Aug;68-69:180-193 [PMID: 29605717]
  26. J Theor Biol. 2014 May 21;349:66-73 [PMID: 24462897]
  27. Biosystems. 2016 Dec;150:87-91 [PMID: 27555086]
  28. Commun Biol. 2018 Jun 14;1:71 [PMID: 30271952]
  29. Commun Biol. 2019 Apr 23;2:137 [PMID: 31044162]
  30. Life (Basel). 2023 Feb 02;13(2): [PMID: 36836784]
  31. J Math Biol. 1980 Apr;9(2):101-14 [PMID: 7365330]
  32. PLoS Comput Biol. 2019 Aug 5;15(8):e1007238 [PMID: 31381556]
  33. Phys Rev Lett. 2006 May 12;96(18):188104 [PMID: 16712402]
  34. Bull Math Biol. 2006 Oct;68(7):1573-99 [PMID: 16832734]
  35. J Cell Sci. 2010 Dec 15;123(Pt 24):4195-200 [PMID: 21123617]
  36. Science. 2013 Jun 7;340(6137):1185-9 [PMID: 23744939]
  37. Cancer Invest. 2002;20(1):139-53 [PMID: 11852996]
  38. Am Nat. 2001 May;157(5):495-511 [PMID: 18707258]
  39. PLoS One. 2015 Oct 28;10(10):e0140234 [PMID: 26509572]
  40. Curr Top Dev Biol. 2009;89:87-114 [PMID: 19737643]
  41. Science. 2011 Mar 25;331(6024):1559-64 [PMID: 21436443]
  42. J R Soc Interface. 2013 Jan 09;10(80):20120997 [PMID: 23303223]
  43. Sci Rep. 2017 Dec;7(1):82 [PMID: 28250441]
  44. Commun Biol. 2019 Apr 23;2:138 [PMID: 31044163]

MeSH Term

Mutation
Biological Evolution
Population Dynamics
Selection, Genetic
Probability

Word Cloud

Created with Highcharts 10.0.0fixationprobabilitypopulationstructuredifferentgraphinvader'smutantsresidentdispersalselectionreproductiverateoffspringconnectedgraphsexactshowconnectivityeffectNaturalusuallystudieddiffersubjectexplorenaturalactsstructuresframeworkgivenspecifiescandisperseinvadingmutantdisperseswild-typefinddenselytendincreaserelationshipsubtlepresentthreemainresultsFirstproveinvadercompleteremovingsingleedgereducesSecondcertainislandmodelshigherincreasesmagnitudedependslayoutconnectionsThirdlatticescomparablefitness:largesizeeitherconstantexponentiallysmalldependingwhetherlessEvolutionarydynamicsmodifyMoranprocessevolutionarytheoryspatial

Similar Articles

Cited By (4)