A geometric process of evolutionary game dynamics.

Philip LaPorte, Martin A Nowak
Author Information
  1. Philip LaPorte: Department of Mathematics, University of California, Berkeley, CA 94720, USA. ORCID
  2. Martin A Nowak: Department of Mathematics, Harvard University, Cambridge, MA 02138, USA.

Abstract

Many evolutionary processes occur in phenotype spaces which are continuous. It is therefore of interest to explore how selection operates in continuous spaces. One approach is adaptive dynamics, which assumes that mutants are local. Here we study a different process which also allows non-local mutants. We assume that a resident population is challenged by an invader who uses a strategy chosen from a random distribution on the space of all strategies. We study the repeated donation game of direct reciprocity. We consider reactive strategies given by two probabilities, denoting respectively the probability to cooperate after the co-player has cooperated or defected. The strategy space is the unit square. We derive analytic formulae for the stationary distribution of evolutionary dynamics and for the average cooperation rate as function of the cost-to-benefit ratio. For positive reactive strategies, we prove that cooperation is more abundant than defection if the area of the cooperative region is greater than 1/2 which is equivalent to benefit, , divided by cost, , exceeding [Formula: see text]. We introduce the concept of strategies that are stable with probability one. We also study an extended process and discuss other games.

Keywords

References

  1. Am Nat. 2002 Oct;160(4):421-38 [PMID: 18707520]
  2. PLoS Comput Biol. 2023 Jun 29;19(6):e1010987 [PMID: 37384811]
  3. PNAS Nexus. 2023 May 25;2(6):pgad176 [PMID: 37287707]
  4. J Theor Biol. 2007 Aug 7;247(3):574-80 [PMID: 17481667]
  5. Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):9929-34 [PMID: 22665767]
  6. J Math Biol. 2008 May;56(5):673-742 [PMID: 17943289]
  7. Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):10797-800 [PMID: 16043717]
  8. Science. 2006 Dec 8;314(5805):1560-3 [PMID: 17158317]
  9. Sci Rep. 2016 May 10;6:25676 [PMID: 27161141]
  10. Theor Popul Biol. 2017 Feb;113:13-22 [PMID: 27693412]
  11. Proc Natl Acad Sci U S A. 2017 May 2;114(18):4715-4720 [PMID: 28420786]
  12. J Theor Biol. 1999 Oct 7;200(3):323-38 [PMID: 10527721]
  13. Proc Natl Acad Sci U S A. 2021 Oct 19;118(42): [PMID: 34649992]
  14. Am Nat. 2013 Jun;181(6):E139-63 [PMID: 23669549]
  15. Evolution. 2003 Jan;57(1):1-17 [PMID: 12643563]
  16. Theor Popul Biol. 2005 Feb;67(1):47-59 [PMID: 15649523]
  17. PLoS One. 2013 Nov 01;8(11):e77886 [PMID: 24223739]
  18. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2686-9 [PMID: 11607644]
  19. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Mar;79(3 Pt 2):036101 [PMID: 19392012]
  20. Nat Commun. 2022 Feb 8;13(1):737 [PMID: 35136025]
  21. Science. 2004 Oct 29;306(5697):859-62 [PMID: 15514155]
  22. Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10409-13 [PMID: 22615375]
  23. J Theor Biol. 1999 Oct 7;200(3):307-21 [PMID: 10527720]
  24. Proc Math Phys Eng Sci. 2019 Mar;475(2223):20180819 [PMID: 31007557]
  25. Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15348-53 [PMID: 24003115]
  26. Sci Rep. 2020 Oct 9;10(1):16904 [PMID: 33037241]
  27. Proc Biol Sci. 1994 Jul 22;257(1348):75-9 [PMID: 8090793]
  28. J Theor Biol. 2001 Mar 21;209(2):173-9 [PMID: 11401459]
  29. Proc Biol Sci. 2000 Aug 22;267(1453):1671-8 [PMID: 11467431]
  30. Sci Rep. 2022 Nov 4;12(1):18645 [PMID: 36333592]
  31. Nature. 2018 Jul;559(7713):246-249 [PMID: 29973718]
  32. Proc Biol Sci. 1999 Sep 7;266(1430):1723-8 [PMID: 10518320]
  33. Evolution. 1999 Aug;53(4):993-1008 [PMID: 28565508]
  34. PLoS One. 2010 Dec 06;5(12):e15117 [PMID: 21151898]
  35. J Theor Biol. 2009 Oct 21;260(4):581-8 [PMID: 19616013]
  36. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jul;74(1 Pt 1):011901 [PMID: 16907121]
  37. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jul;74(1 Pt 1):011909 [PMID: 16907129]
  38. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jan;77(1 Pt 1):011904 [PMID: 18351873]
  39. Proc Biol Sci. 2010 Feb 7;277(1680):463-8 [PMID: 19846456]
  40. Nature. 2004 Apr 8;428(6983):646-50 [PMID: 15071593]
  41. Science. 2004 Feb 6;303(5659):793-9 [PMID: 14764867]
  42. Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6913-8 [PMID: 23572576]
  43. Nature. 2004 Apr 8;428(6983):643-6 [PMID: 15074318]
  44. J Theor Biol. 2012 May 7;300:299-308 [PMID: 22530239]
  45. Proc Natl Acad Sci U S A. 2023 May 16;120(20):e2221080120 [PMID: 37155877]
  46. J R Soc Interface. 2023 Nov;20(208):20230460 [PMID: 38016638]
  47. Nature. 1993 Jul 1;364(6432):56-8 [PMID: 8316296]
  48. J Theor Biol. 2009 Jan 7;256(1):45-57 [PMID: 18938180]
  49. PLoS Comput Biol. 2022 Jun 14;18(6):e1010149 [PMID: 35700167]
  50. Front Robot AI. 2018 Aug 29;5:102 [PMID: 33500981]
  51. J Theor Biol. 2010 Oct 7;266(3):358-66 [PMID: 20619271]
  52. J Math Biol. 1996;34(5-6):579-612 [PMID: 8691086]
  53. Proc Biol Sci. 2009 Jan 22;276(1655):315-21 [PMID: 18812288]

MeSH Term

Game Theory
Cooperative Behavior
Probability
Biological Evolution
Cost-Benefit Analysis

Word Cloud

Created with Highcharts 10.0.0evolutionarystrategiesdynamicsstudyprocessgamecooperationspacescontinuousmutantsalsostrategydistributionspacedirectreciprocityreactiveprobabilityManyprocessesoccurphenotypethereforeinterestexploreselectionoperatesOneapproachadaptiveassumeslocaldifferentallowsnon-localassumeresidentpopulationchallengedinvaderuseschosenrandomrepeateddonationconsidergiventwoprobabilitiesdenotingrespectivelycooperateco-playercooperateddefectedunitsquarederiveanalyticformulaestationaryaverageratefunctioncost-to-benefitratiopositiveproveabundantdefectionareacooperativeregiongreater1/2equivalentbenefitdividedcostexceeding[Formula:seetext]introduceconceptstableoneextendeddiscussgamesgeometricPrisoner’sDilemmaevolutiontheory

Similar Articles

Cited By (2)