Neuropilin-1 identifies a subset of highly activated CD8+ T cells during parasitic and viral infections.

Hanna Abberger, Matthias Hose, Anne Ninnemann, Christopher Menne, Mareike Eilbrecht, Karl S Lang, Kai Matuschewski, Robert Geffers, Josephine Herz, Jan Buer, Astrid M Westendorf, Wiebke Hansen
Author Information
  1. Hanna Abberger: Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany.
  2. Matthias Hose: Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany.
  3. Anne Ninnemann: Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany.
  4. Christopher Menne: Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany.
  5. Mareike Eilbrecht: Institute of Immunology, University Hospital Essen, University Duisburg-Essen, Germany.
  6. Karl S Lang: Institute of Immunology, University Hospital Essen, University Duisburg-Essen, Germany.
  7. Kai Matuschewski: Department of Molecular Parasitology, Institute of Biology, Humboldt University Berlin, Germany.
  8. Robert Geffers: Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany.
  9. Josephine Herz: Department of Pediatrics 1, Neonatology & Experimental perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Germany.
  10. Jan Buer: Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany.
  11. Astrid M Westendorf: Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany.
  12. Wiebke Hansen: Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany.

Abstract

Neuropilin-1 (Nrp-1) expression on CD8+ T cells has been identified in tumor-infiltrating lymphocytes and in persistent murine gamma-herpes virus infections, where it interferes with the development of long-lived memory T cell responses. In parasitic and acute viral infections, the role of Nrp-1 expression on CD8+ T cells remains unclear. Here, we demonstrate a strong induction of Nrp-1 expression on CD8+ T cells in Plasmodium berghei ANKA (PbA)-infected mice that correlated with neurological deficits of experimental cerebral malaria (ECM). Likewise, the frequency of Nrp-1+CD8+ T cells was significantly elevated and correlated with liver damage in the acute phase of lymphocytic choriomeningitis virus (LCMV) infection. Transcriptomic and flow cytometric analyses revealed a highly activated phenotype of Nrp-1+CD8+ T cells from infected mice. Correspondingly, in vitro experiments showed rapid induction of Nrp-1 expression on CD8+ T cells after stimulation in conjunction with increased expression of activation-associated molecules. Strikingly, T cell-specific Nrp-1 ablation resulted in reduced numbers of activated T cells in the brain of PbA-infected mice as well as in spleen and liver of LCMV-infected mice and alleviated the severity of ECM and LCMV-induced liver pathology. Mechanistically, we identified reduced blood-brain barrier leakage associated with reduced parasite sequestration in the brain of PbA-infected mice with T cell-specific Nrp-1 deficiency. In conclusion, Nrp-1 expression on CD8+ T cells represents a very early activation marker that exacerbates deleterious CD8+ T cell responses during both, parasitic PbA and acute LCMV infections.

References

  1. Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2040-5 [PMID: 21245328]
  2. Front Immunol. 2018 Nov 13;9:2611 [PMID: 30483269]
  3. Cell. 1994 Jan 14;76(1):17-27 [PMID: 8287475]
  4. J Immunol. 2003 Feb 15;170(4):2221-8 [PMID: 12574396]
  5. Immunity. 2008 Mar;28(3):402-13 [PMID: 18328743]
  6. J Immunol. 2021 Sep 1;207(5):1288-1297 [PMID: 34341169]
  7. Development. 1999 Nov;126(21):4895-902 [PMID: 10518505]
  8. Int J Clin Exp Pathol. 2014 Feb 15;7(3):870-81 [PMID: 24695377]
  9. Nat Rev Immunol. 2016 Nov;16(11):676-689 [PMID: 27640624]
  10. Stat Appl Genet Mol Biol. 2004;3:Article3 [PMID: 16646809]
  11. J Exp Med. 2012 Oct 22;209(11):2001-16 [PMID: 23045606]
  12. Nat Immunol. 2009 Jan;10(1):29-37 [PMID: 19043418]
  13. Lancet. 1990 Oct 27;336(8722):1039-43 [PMID: 1977027]
  14. Nat Commun. 2019 Jul 26;10(1):3345 [PMID: 31350404]
  15. Science. 2020 Nov 13;370(6518):856-860 [PMID: 33082293]
  16. Eur J Immunol. 2022 Feb;52(2):312-327 [PMID: 34752634]
  17. Semin Immunopathol. 2015 May;37(3):221-31 [PMID: 25772948]
  18. PLoS One. 2010 Oct 01;5(10): [PMID: 20957049]
  19. EMBO Mol Med. 2013 Jul;5(7):984-99 [PMID: 23681698]
  20. Nature. 2013 Sep 12;501(7466):252-6 [PMID: 23913274]
  21. Science. 2020 Nov 13;370(6518):861-865 [PMID: 33082294]
  22. Front Immunol. 2017 Oct 10;8:1228 [PMID: 29067024]
  23. PLoS Pathog. 2010 Sep 30;6(9):e1001032 [PMID: 20941396]
  24. J Exp Med. 1973 Nov 1;138(5):1266-9 [PMID: 4542807]
  25. J Immunol. 2009 Dec 1;183(11):7014-22 [PMID: 19890049]
  26. Exp Ther Med. 2018 Aug;16(2):537-546 [PMID: 30116312]
  27. J Mol Biol. 2007 Feb 23;366(3):815-29 [PMID: 17196977]
  28. Science. 2008 Oct 10;322(5899):271-5 [PMID: 18845758]
  29. Parasitology. 2010 Apr;137(5):755-72 [PMID: 20028608]
  30. Front Immunol. 2019 May 14;10:1068 [PMID: 31139190]
  31. J Biomed Nanotechnol. 2013 Apr;9(4):559-63 [PMID: 23621014]
  32. Viruses. 2012 Oct 29;4(11):2650-69 [PMID: 23202498]
  33. Front Immunol. 2019 Dec 11;10:2917 [PMID: 31921176]
  34. Eur J Immunol. 2004 Mar;34(3):623-630 [PMID: 14991591]
  35. Transplant Rev. 1974;19(0):89-120 [PMID: 4601807]
  36. J Immunol. 2019 Dec 15;203(12):3237-3246 [PMID: 31740486]
  37. Dev Cell. 2003 Jul;5(1):45-57 [PMID: 12852851]
  38. Neuron. 1997 Nov;19(5):995-1005 [PMID: 9390514]
  39. Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14733-8 [PMID: 20679213]
  40. J Immunol. 2011 Jun 1;186(11):6148-56 [PMID: 21525386]
  41. mSphere. 2019 May 22;4(3): [PMID: 31118303]
  42. Eur J Immunol. 2006 May;36(5):1093-103 [PMID: 16541471]
  43. Nat Immunol. 2002 May;3(5):477-82 [PMID: 11953749]
  44. Arch Pharm Res. 2016 Nov;39(11):1548-1555 [PMID: 27826752]
  45. PLoS One. 2014 Oct 24;9(10):e110707 [PMID: 25343644]
  46. Mol Biochem Parasitol. 2006 Jan;145(1):60-70 [PMID: 16242190]
  47. J Immunol Res. 2015;2015:739706 [PMID: 26576439]
  48. Nat Immunol. 2020 Sep;21(9):1010-1021 [PMID: 32661362]
  49. Cell. 1998 Mar 20;92(6):735-45 [PMID: 9529250]

MeSH Term

Mice
Animals
Neuropilin-1
Parasites
Malaria, Cerebral
Lymphocytic Choriomeningitis
Lymphocytic choriomeningitis virus
CD8-Positive T-Lymphocytes
Mice, Inbred C57BL

Chemicals

Neuropilin-1

Word Cloud

Created with Highcharts 10.0.0TcellsNrp-1CD8+expressionmiceinfectionsparasiticacuteliveractivatedreducedNeuropilin-1identifiedviruscellresponsesviralinductionPbAcorrelatedECMNrp-1+CD8+LCMVhighlycell-specificbrainPbA-infectedtumor-infiltratinglymphocytespersistentmurinegamma-herpesinterferesdevelopmentlong-livedmemoryroleremainsuncleardemonstratestrongPlasmodiumbergheiANKA-infectedneurologicaldeficitsexperimentalcerebralmalariaLikewisefrequencysignificantlyelevateddamagephaselymphocyticchoriomeningitisinfectionTranscriptomicflowcytometricanalysesrevealedphenotypeinfectedCorrespondinglyvitroexperimentsshowedrapidstimulationconjunctionincreasedactivation-associatedmoleculesStrikinglyablationresultednumberswellspleenLCMV-infectedalleviatedseverityLCMV-inducedpathologyMechanisticallyblood-brainbarrierleakageassociatedparasitesequestrationdeficiencyconclusionrepresentsearlyactivationmarkerexacerbatesdeleteriousidentifiessubset

Similar Articles

Cited By