Lapatinib dysregulates HER2 signaling and impairs the viability of human uveal melanoma cells.

Wenying Shu, Janney Z Wang, Xue Zhu, Ke Wang, Svetlana Cherepanoff, R Max Conway, Michele C Madigan, Li-Anne Lim, Hong Zhu, Ling Zhu, Michael Murray, Fanfan Zhou
Author Information
  1. Wenying Shu: The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW 2006, Australia.
  2. Janney Z Wang: The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW 2006, Australia.
  3. Xue Zhu: Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province 214063, China.
  4. Ke Wang: Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province 214063, China.
  5. Svetlana Cherepanoff: SydPath, Department of Anatomical Pathology, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia.
  6. R Max Conway: Ocular Oncology Unit, Sydney Eye Hospital and The Kinghorn Cancer Centre, Sydney, NSW 2006, Australia.
  7. Michele C Madigan: Save Sight Institute, The University of Sydney, Sydney, NSW 2006, Australia.
  8. Li-Anne Lim: Ocular Oncology Unit, Sydney Eye Hospital and The Kinghorn Cancer Centre, Sydney, NSW 2006, Australia.
  9. Hong Zhu: Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
  10. Ling Zhu: Save Sight Institute, The University of Sydney, Sydney, NSW 2006, Australia.
  11. Michael Murray: The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW 2006, Australia.
  12. Fanfan Zhou: The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW 2006, Australia.

Abstract

Uveal melanoma (UM) is the principal type of intraocular malignancy in adults. Up to 50% of UM patients develop metastatic disease with very poor survival. There are few drugs available to treat the primary or metastatic UM. This study was undertaken to evaluate the anti-cancer effect of lapatinib and corroborate the potential of HER2 inhibition in the treatment of UM. The anti-UM activity of lapatinib was assessed using cell viability, cell death and cell cycle analysis, and its anti-metastatic actions were evaluated using would healing, invasion and colony formation assays. Immunoblotting was used to substantiate the actions of lapatinib on apoptotic and HER2 signaling. The anti-UM activity of lapatinib was further evaluated in a UM xenograft mouse model. Lapatinib decreased the viability of four UM cell lines (IC: 3.67-6.53 µM). The antiproliferative activity of lapatinib was corroborated in three primary cell lines isolated from UM patient tumors. In UM cell lines, lapatinib promoted apoptosis and cell cycle arrest, and strongly inhibited cell migration, invasion and reproductive cell growth. Lapatinib dysregulated HER2-AKT/ERK/PI3K signalling leading to the altered expression of apoptotic factors and cell cycle mediators in UM cell lines. Importantly, lapatinib suppressed tumourigenesis in mice carrying UM cell xenografts. Together the present findings are consistent with the assertion that HER2 is a viable therapeutic target in UM. Lapatinib is active in primary and metastatic UM as a clinically approved HER2 inhibitor. The activity of lapatinib in UM patients could be evaluated in future clinical trials.

Keywords

References

  1. JAMA Ophthalmol. 2014 May;132(5):605-13 [PMID: 24626610]
  2. Clin Exp Ophthalmol. 2016 Aug;44(6):509-19 [PMID: 26601795]
  3. Leukemia. 2008 Apr;22(4):686-707 [PMID: 18337767]
  4. Cancer. 2005 Mar 1;103(5):1000-7 [PMID: 15651058]
  5. Biochimie. 2023 Sep;212:114-122 [PMID: 37105300]
  6. J Surg Oncol. 2014 May;109(6):542-7 [PMID: 24357463]
  7. Cancer Invest. 2010 Nov;28(9):963-8 [PMID: 20690807]
  8. Cancer Metastasis Rev. 2016 Dec;35(4):575-588 [PMID: 27913999]
  9. Arch Ophthalmol. 2002 Apr;120(4):466-70 [PMID: 11934320]
  10. Curr Opin Cell Biol. 2009 Apr;21(2):177-84 [PMID: 19208461]
  11. Cancer. 1998 Jul 15;83(2):354-9 [PMID: 9669819]
  12. Br J Cancer. 2008 Mar 25;98(6):1076-84 [PMID: 18334972]
  13. Oncogene. 2009 Feb 12;28(6):803-14 [PMID: 19060928]
  14. Eur J Surg Oncol. 2009 Nov;35(11):1192-7 [PMID: 19329272]
  15. Cancer Cell Int. 2015 Nov 26;15:111 [PMID: 26617467]
  16. J Clin Oncol. 2000 Jan;18(2):267-74 [PMID: 10637239]
  17. Eur J Cancer. 2015 Nov;51(16):2404-12 [PMID: 26278648]
  18. Cancers (Basel). 2023 Aug 18;15(16): [PMID: 37627201]
  19. BMC Cancer. 2015 Jun 11;15:468 [PMID: 26062614]
  20. Am J Cancer Res. 2019 Oct 01;9(10):2103-2119 [PMID: 31720077]
  21. Cell Cycle. 2010 Dec 1;9(23):4638-49 [PMID: 21084836]
  22. Ther Adv Med Oncol. 2018 Feb 21;10:1758834018757175 [PMID: 29497459]
  23. J Clin Oncol. 1993 Oct;11(10):1936-42 [PMID: 8105035]
  24. Oncotarget. 2018 Apr 6;9(26):18254-18268 [PMID: 29719603]
  25. Drugs. 2007;67(14):2045-75 [PMID: 17883287]
  26. Arch Ophthalmol. 2001 Mar;119(3):373-7 [PMID: 11231770]
  27. Bioorg Chem. 2021 Nov;116:105393 [PMID: 34628226]
  28. Int J Cancer. 1991 Jan 21;47(2):227-37 [PMID: 1671030]
  29. Cancers (Basel). 2019 Jul 22;11(7): [PMID: 31336679]
  30. Nat Rev Mol Cell Biol. 2001 Feb;2(2):127-37 [PMID: 11252954]
  31. Cancer. 1993 Apr 1;71(7):2299-305 [PMID: 8453550]
  32. J Clin Oncol. 2014 May 10;32(14):1472-9 [PMID: 24711549]
  33. Ophthalmic Genet. 2021 Dec;42(6):732-743 [PMID: 34353217]
  34. Nat Rev Clin Oncol. 2020 Jan;17(1):33-48 [PMID: 31548601]
  35. Cancer Cell. 2004 Nov;6(5):459-69 [PMID: 15542430]
  36. Front Immunol. 2022 Jun 14;13:922315 [PMID: 35774794]
  37. Genes Chromosomes Cancer. 1990 Sep;2(3):205-9 [PMID: 2078511]
  38. Invest Ophthalmol Vis Sci. 1998 Jun;39(7):1067-75 [PMID: 9620065]
  39. Cancer Res. 2019 Mar 1;79(5):899-904 [PMID: 30622115]
  40. JCO Precis Oncol. 2021 Dec 16;5: [PMID: 34950838]
  41. Invest Ophthalmol Vis Sci. 2000 Jul;41(8):2023-7 [PMID: 10892838]
  42. FEBS J. 2021 Nov;288(21):6226-6249 [PMID: 33838075]
  43. Clin Cancer Res. 2009 Nov 1;15(21):6702-8 [PMID: 19825948]
  44. Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9773-8 [PMID: 16785428]
  45. Melanoma Res. 2010 Apr;20(2):126-32 [PMID: 20061986]
  46. Nat Rev Mol Cell Biol. 2002 Sep;3(9):651-62 [PMID: 12209125]
  47. Pharm Res. 2012 Mar;29(3):770-81 [PMID: 22011930]
  48. Science. 1989 May 12;244(4905):707-12 [PMID: 2470152]
  49. J Natl Cancer Inst. 2008 Aug 6;100(15):1092-103 [PMID: 18664652]
  50. Bioessays. 2001 Feb;23(2):161-9 [PMID: 11169589]
  51. Int J Ophthalmol. 2021 Dec 18;14(12):1834-1842 [PMID: 34926196]
  52. Int J Mol Sci. 2020 Jan 20;21(2): [PMID: 31968535]
  53. Lancet Oncol. 2017 Apr;18(4):545-554 [PMID: 28238593]
  54. Eur J Cancer. 2013 Oct;49(15):3353-65 [PMID: 23849826]
  55. Cytokine. 2017 Jan;89:12-20 [PMID: 26631912]
  56. Adv Enzyme Regul. 2006;46:249-79 [PMID: 16854453]
  57. Cancer Immunol Immunother. 2007 Feb;56(2):193-204 [PMID: 16752155]
  58. Eur J Ophthalmol. 2012 Mar-Apr;22(2):236-43 [PMID: 21959680]
  59. Front Oncol. 2022 Mar 21;12:788496 [PMID: 35387119]
  60. Cancer Metastasis Rev. 2017 Mar;36(1):109-140 [PMID: 28229253]
  61. BMC Cancer. 2004 Nov 23;4:83 [PMID: 15560844]
  62. Cancer Treat Rev. 2012 Aug;38(5):549-53 [PMID: 22270078]
  63. Nat Rev Cancer. 2009 Jan;9(1):28-39 [PMID: 19104514]
  64. Melanoma Res. 2011 Aug;21(4):357-63 [PMID: 21738104]
  65. Nat Rev Drug Discov. 2002 Apr;1(4):309-15 [PMID: 12120282]
  66. Invest Ophthalmol Vis Sci. 2008 Feb;49(2):497-504 [PMID: 18234991]
  67. N Engl J Med. 2007 Jul 5;357(1):39-51 [PMID: 17611206]
  68. Oncogene. 2008 Aug 7;27(34):4702-11 [PMID: 18408761]
  69. Eye (Lond). 1998;12 ( Pt 5):781-2 [PMID: 10070508]
  70. Oncol Lett. 2021 Aug;22(2):597 [PMID: 34188699]
  71. Cancer Res. 1993 Oct 15;53(20):4960-70 [PMID: 8104689]
  72. Pigment Cell Melanoma Res. 2015 May;28(3):357-9 [PMID: 25515650]
  73. Mol Cancer Ther. 2007 Feb;6(2):667-74 [PMID: 17308062]
  74. Invest Ophthalmol Vis Sci. 2010 Jan;51(1):421-9 [PMID: 19661225]
  75. Breast Cancer Res. 2014 Apr 02;16(2):R33 [PMID: 24693969]
  76. Cancer. 1998 Oct 15;83(8):1664-78 [PMID: 9781962]
  77. N Engl J Med. 2006 Dec 28;355(26):2733-43 [PMID: 17192538]
  78. Invest Ophthalmol Vis Sci. 2003 Nov;44(11):4651-9 [PMID: 14578381]
  79. BMJ Open Sci. 2020 Jul 20;4(1):e100115 [PMID: 34095516]
  80. Cancers (Basel). 2019 Jun 18;11(6): [PMID: 31216772]
  81. Curr Eye Res. 2007 Mar;32(3):281-90 [PMID: 17453948]
  82. Clin Cancer Res. 2011 Jul 15;17(14):4834-43 [PMID: 21768129]
  83. Oncotarget. 2017 Mar 14;8(11):17887-17896 [PMID: 28060735]
  84. Ophthalmology. 2012 Aug;119(8):1582-9 [PMID: 22503229]
  85. Lab Invest. 1996 Jul;75(1):55-66 [PMID: 8683940]
  86. Am J Transl Res. 2019 Jun 15;11(6):3341-3352 [PMID: 31312348]
  87. PLoS One. 2013 Aug 27;8(8):e73261 [PMID: 24015299]
  88. J Pharm Pharmacol. 2022 May 20;74(5):660-680 [PMID: 35532546]
  89. Cancer Biol Ther. 2019;20(5):700-710 [PMID: 30571927]
  90. Ophthalmology. 2004 May;111(5):977-83 [PMID: 15121377]
  91. Clin Ther. 2008 Aug;30(8):1426-47 [PMID: 18803986]
  92. Mol Cell. 2003 Feb;11(2):495-505 [PMID: 12620236]
  93. Cell Oncol (Dordr). 2022 Aug;45(4):601-619 [PMID: 35781872]
  94. Anticancer Res. 2019 Nov;39(11):5927-5932 [PMID: 31704817]
  95. Nat Commun. 2020 May 15;11(1):2408 [PMID: 32415113]
  96. Int J Ophthalmol. 2016 Aug 18;9(8):1215-25 [PMID: 27588278]
  97. Am J Ophthalmol. 2021 Apr;224:172-177 [PMID: 33316260]
  98. Mol Carcinog. 2013 Dec;52(12):959-69 [PMID: 22693070]
  99. Expert Rev Anticancer Ther. 2007 Sep;7(9):1183-92 [PMID: 17892419]
  100. J Clin Invest. 2015 May;125(5):1780-9 [PMID: 25932675]
  101. Ophthalmology. 2011 Sep;118(9):1881-5 [PMID: 21704381]
  102. Am J Clin Oncol. 2010 Oct;33(5):474-80 [PMID: 19935383]

Word Cloud

Created with Highcharts 10.0.0UMcelllapatinibHER2activityLapatiniblinesmelanomametastaticprimaryviabilitycycleevaluatedpatientsanti-cancerinhibitionanti-UMusinganti-metastaticactionsinvasionapoptoticsignalinguvealUvealprincipaltypeintraocularmalignancyadults50%developdiseasepoorsurvivaldrugsavailabletreatstudyundertakenevaluateeffectcorroboratepotentialtreatmentassesseddeathanalysishealingcolonyformationassaysImmunoblottingusedsubstantiatexenograftmousemodeldecreasedfourIC:367-653µMantiproliferativecorroboratedthreeisolatedpatienttumorspromotedapoptosisarreststronglyinhibitedmigrationreproductivegrowthdysregulatedHER2-AKT/ERK/PI3KsignallingleadingalteredexpressionfactorsmediatorsImportantlysuppressedtumourigenesismicecarryingxenograftsTogetherpresentfindingsconsistentassertionviabletherapeutictargetactiveclinicallyapprovedinhibitorfutureclinicaltrialsdysregulatesimpairshumancells

Similar Articles

Cited By