Telomere-to-telomere assembly of cassava genome reveals the evolution of cassava and divergence of allelic expression.

Xin-Dong Xu, Ru-Peng Zhao, Liang Xiao, Liuying Lu, Min Gao, Yu-Hong Luo, Zu-Wen Zhou, Si-Ying Ye, Yong-Qing Qian, Bing-Liang Fan, Xiaohong Shang, Pingli Shi, Wendan Zeng, Sheng Cao, Zhengdan Wu, Huabing Yan, Ling-Ling Chen, Jia-Ming Song
Author Information
  1. Xin-Dong Xu: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
  2. Ru-Peng Zhao: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
  3. Liang Xiao: Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
  4. Liuying Lu: Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
  5. Min Gao: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
  6. Yu-Hong Luo: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
  7. Zu-Wen Zhou: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
  8. Si-Ying Ye: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
  9. Yong-Qing Qian: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
  10. Bing-Liang Fan: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
  11. Xiaohong Shang: Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
  12. Pingli Shi: Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
  13. Wendan Zeng: Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
  14. Sheng Cao: Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
  15. Zhengdan Wu: Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
  16. Huabing Yan: Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
  17. Ling-Ling Chen: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
  18. Jia-Ming Song: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China. ORCID

Abstract

Cassava is a crucial crop that makes a significant contribution to ensuring human food security. However, high-quality telomere-to-telomere cassava genomes have not been available up to now, which has restricted the progress of haploid molecular breeding for cassava. In this study, we constructed two nearly complete haploid resolved genomes and an integrated, telomere-to-telomere gap-free reference genome of an excellent cassava variety, 'Xinxuan 048', thereby providing a new high-quality genomic resource. Furthermore, the evolutionary history of several species within the Euphorbiaceae family was revealed. Through comparative analysis of haploid genomes, it was found that two haploid genomes had extensive differences in linear structure, transcriptome features, and epigenetic characteristics. Genes located within the highly divergent regions and differentially expressed alleles are enriched in the functions of auxin response and the starch synthesis pathway. The high heterozygosity of cassava 'Xinxuan 048' leads to rapid trait segregation in the first selfed generation. This study provides a theoretical basis and genomic resource for molecular breeding of cassava haploids.

References

  1. Nucleic Acids Res. 2020 Jul 2;48(W1):W177-W184 [PMID: 32301980]
  2. Science. 2022 Apr;376(6588):44-53 [PMID: 35357919]
  3. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  4. Genome Biol. 2019 Dec 16;20(1):277 [PMID: 31842948]
  5. Genome Biol. 2020 Sep 14;21(1):245 [PMID: 32928274]
  6. Genome Biol. 2021 Jan 4;22(1):3 [PMID: 33397434]
  7. Genome Biol. 2022 Dec 15;23(1):258 [PMID: 36522651]
  8. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  9. Front Plant Sci. 2022 Jul 04;13:915056 [PMID: 35860527]
  10. Nucleic Acids Res. 2018 Nov 30;46(21):e126 [PMID: 30107434]
  11. Bioinformatics. 2015 Oct 15;31(20):3350-2 [PMID: 26099265]
  12. Genome Res. 2021 Jul;31(7):1290-1295 [PMID: 34103331]
  13. BMC Bioinformatics. 2009 Jul 27;10:232 [PMID: 19635165]
  14. Nat Methods. 2022 Jun;19(6):635-638 [PMID: 35689027]
  15. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  16. Mol Plant. 2021 Dec 6;14(12):2032-2055 [PMID: 34384905]
  17. Gigascience. 2022 Mar 24;11: [PMID: 35333302]
  18. Science. 2021 Aug 6;373(6555):655-662 [PMID: 34353948]
  19. Innovation (Camb). 2021 Jul 01;2(3):100141 [PMID: 34557778]
  20. Bioinformatics. 2010 Jun 15;26(12):i367-73 [PMID: 20529929]
  21. Mol Plant. 2021 Oct 4;14(10):1757-1767 [PMID: 34171480]
  22. Science. 2017 Apr 7;356(6333):92-95 [PMID: 28336562]
  23. Nat Genet. 2022 Jan;54(1):73-83 [PMID: 34980919]
  24. Cell Syst. 2016 Jul;3(1):95-8 [PMID: 27467249]
  25. Nucleic Acids Res. 2023 Jan 6;51(D1):D18-D28 [PMID: 36420893]
  26. Cell. 2021 Jun 24;184(13):3542-3558.e16 [PMID: 34051138]
  27. Nat Biotechnol. 2016 May;34(5):562-70 [PMID: 27088722]
  28. BMC Bioinformatics. 2014 Aug 29;15:293 [PMID: 25176396]
  29. Nat Plants. 2023 Apr;9(4):554-571 [PMID: 36997685]
  30. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  31. Nature. 2022 Apr;604(7906):437-446 [PMID: 35444317]
  32. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  33. Science. 2021 Nov 12;374(6569):eabi7489 [PMID: 34762468]
  34. Nat Plants. 2020 Jan;6(1):34-45 [PMID: 31932676]
  35. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  36. Genome Res. 2017 May;27(5):737-746 [PMID: 28100585]
  37. J Genet Genomics. 2022 Dec;49(12):1174-1176 [PMID: 35436609]
  38. 3 Biotech. 2020 Mar;10(3):91 [PMID: 32089986]
  39. Mol Plant. 2022 Dec 5;15(12):1841-1851 [PMID: 36307977]
  40. Genome Biol. 2020 Dec 2;21(1):291 [PMID: 33267872]
  41. Genomics Proteomics Bioinformatics. 2022 Feb;20(1):42-59 [PMID: 34339842]
  42. Bioinformatics. 2011 Nov 1;27(21):2987-93 [PMID: 21903627]
  43. Nat Commun. 2020 Mar 18;11(1):1432 [PMID: 32188846]
  44. Bioinformatics. 2023 Jan 1;39(1): [PMID: 36562559]
  45. Mol Plant. 2021 Jun 7;14(6):851-854 [PMID: 33866024]
  46. Fly (Austin). 2012 Apr-Jun;6(2):80-92 [PMID: 22728672]
  47. Rice (N Y). 2013 Feb 06;6(1):4 [PMID: 24280374]
  48. Plant Biotechnol J. 2023 Feb;21(2):247-249 [PMID: 36318278]
  49. Bioinformatics. 2005 May 1;21(9):1859-75 [PMID: 15728110]
  50. BMC Biol. 2019 Sep 18;17(1):75 [PMID: 31533702]
  51. Genome Biol. 2019 Nov 14;20(1):238 [PMID: 31727128]
  52. J Exp Bot. 2023 Jan 1;74(1):24-39 [PMID: 36255144]
  53. Mol Plant. 2022 Aug 1;15(8):1268-1284 [PMID: 35746868]
  54. Nat Methods. 2021 Feb;18(2):170-175 [PMID: 33526886]
  55. Gigascience. 2019 Jan 1;8(1): [PMID: 30576505]
  56. Gigascience. 2020 Sep 1;9(9): [PMID: 32893860]
  57. Nat Biotechnol. 2022 Sep;40(9):1332-1335 [PMID: 35332338]
  58. Genome Biol. 2020 Oct 16;21(1):265 [PMID: 33066802]
  59. PLoS Comput Biol. 2018 Jan 26;14(1):e1005944 [PMID: 29373581]
  60. Nature. 2000 Dec 14;408(6814):816-20 [PMID: 11130712]
  61. Genome Biol. 2016 Sep 27;17(1):194 [PMID: 27671052]
  62. PLoS One. 2014 Nov 19;9(11):e112963 [PMID: 25409509]
  63. Bioinformatics. 2006 May 15;22(10):1269-71 [PMID: 16543274]
  64. Bioinformatics. 2011 Mar 15;27(6):764-70 [PMID: 21217122]
  65. Hortic Res. 2023 May 31;10(7):uhad111 [PMID: 37786730]
  66. Genomics Proteomics Bioinformatics. 2021 Aug;19(4):619-628 [PMID: 33662620]
  67. Plant Mol Biol. 2022 Jun;109(3):177-191 [PMID: 33604743]
  68. Genome Biol. 2015 Dec 01;16:259 [PMID: 26619908]
  69. Bioinformatics. 2018 Sep 15;34(18):3094-3100 [PMID: 29750242]
  70. Plant Biotechnol J. 2022 Jul;20(7):1373-1386 [PMID: 35338551]
  71. Genome Biol. 2015 Aug 06;16:157 [PMID: 26243257]
  72. Science. 2008 Apr 25;320(5875):486-8 [PMID: 18436778]
  73. Hortic Res. 2023 Feb 20;10(4):uhad027 [PMID: 37090094]
  74. Mol Plant. 2020 Feb 3;13(2):336-350 [PMID: 31838037]

Word Cloud

Created with Highcharts 10.0.0cassavagenomeshaploidhigh-qualitytelomere-to-telomeremolecularbreedingstudytwogenome'Xinxuan048'genomicresourcewithinCassavacrucialcropmakessignificantcontributionensuringhumanfoodsecurityHoweveravailablenowrestrictedprogressconstructednearlycompleteresolvedintegratedgap-freereferenceexcellentvarietytherebyprovidingnewFurthermoreevolutionaryhistoryseveralspeciesEuphorbiaceaefamilyrevealedcomparativeanalysisfoundextensivedifferenceslinearstructuretranscriptomefeaturesepigeneticcharacteristicsGeneslocatedhighlydivergentregionsdifferentiallyexpressedallelesenrichedfunctionsauxinresponsestarchsynthesispathwayhighheterozygosityleadsrapidtraitsegregationfirstselfedgenerationprovidestheoreticalbasishaploidsTelomere-to-telomereassemblyrevealsevolutiondivergenceallelicexpression

Similar Articles

Cited By