Identification of miRNAs and their targets in two species with contrasting rubber-producing ability.

Cuili Liang, Yitong Yan, Yingchao Tan, Xue Yang, Jie Cao, Chaorong Tang, Kaiye Liu
Author Information
  1. Cuili Liang: National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou, China.
  2. Yitong Yan: National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou, China.
  3. Yingchao Tan: National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou, China.
  4. Xue Yang: National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou, China.
  5. Jie Cao: National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou, China.
  6. Chaorong Tang: National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou, China.
  7. Kaiye Liu: National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou, China.

Abstract

MicroRNAs (miRNAs) are widely involved in various aspects of plant growth and development. However, how miRNAs and their targets regulate natural rubber metabolism remains unclear in the rubber-producing dandelions, which are being developed as alternative commercial sources of natural rubber. Here, we combined small RNA sequencing, degradome sequencing, target gene prediction, and mRNA sequencing to identify miRNAs and their targets in two dandelion species, the high rubber-yielding (Tk) and the low rubber-yielding (Ts). A total of 142 miRNAs, including 108 known and 34 novel ones, were discovered, with 53 identified as differentially expressed (DE) between the latex of Tk and Ts. Degradome sequencing identified 145 targets corresponding to 74 miRNAs. TAPIR and psRNATarget, respectively, predicted 165 and 164 non-redundant targets for the 53 aforementioned DE miRNAs. Gene ontology (GO) enrichment analysis indicated the DE miRNAs and their targets might affect natural rubber production via regulating macromolecular biosynthesis and metabolism in latex. Four critical types of regulatory modules, including miR172-AP2/ERF, miR164-NAC, miR160-ARF, and miRN19-protein kinase, were identified and their interaction networks were constructed, indicating a potential involvement in natural rubber production. The findings and the large miRNA dataset presented here are beneficial to further deciphering the roles of miRNAs in the biosynthesis of natural rubber and medicinal metabolites in dandelion.

Keywords

References

  1. Plant Physiol. 2012 Mar;158(3):1406-17 [PMID: 22238421]
  2. Genome Biol. 2009;10(3):R25 [PMID: 19261174]
  3. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  4. Development. 2006 Sep;133(18):3539-47 [PMID: 16914499]
  5. Crit Rev Biotechnol. 2007 Oct-Dec;27(4):217-31 [PMID: 18085463]
  6. Plant Cell. 2005 Mar;17(3):705-21 [PMID: 15722475]
  7. Int J Biol Macromol. 2022 Sep 1;216:820-829 [PMID: 35921910]
  8. Plant Cell Physiol. 2017 Mar 1;58(3):426-439 [PMID: 28064248]
  9. Trends Plant Sci. 2019 Jun;24(6):553-567 [PMID: 30979674]
  10. PLoS One. 2015 Sep 25;10(9):e0139002 [PMID: 26406988]
  11. Plant Cell. 2005 May;17(5):1376-86 [PMID: 15829603]
  12. Int J Mol Sci. 2018 Dec 22;20(1): [PMID: 30583567]
  13. Nat Protoc. 2016 Sep;11(9):1650-67 [PMID: 27560171]
  14. Annu Rev Plant Biol. 2019 Apr 29;70:489-525 [PMID: 30848930]
  15. Bioinformatics. 2009 Jan 1;25(1):130-1 [PMID: 19017659]
  16. Front Plant Sci. 2017 Mar 29;8:374 [PMID: 28424705]
  17. Pharmazie. 1958 Jul;13(7):423-36 [PMID: 13578653]
  18. Annu Rev Plant Biol. 2006;57:19-53 [PMID: 16669754]
  19. Genom Data. 2013 Aug 14;1:2-6 [PMID: 26484050]
  20. Appl Microbiol Biotechnol. 2000 Apr;53(4):355-65 [PMID: 10803889]
  21. Chem Pharm Bull (Tokyo). 2003 May;51(5):599-601 [PMID: 12736465]
  22. Bioinformatics. 2018 Sep 1;34(17):i884-i890 [PMID: 30423086]
  23. Plant Cell. 2003 Nov;15(11):2730-41 [PMID: 14555699]
  24. Sci China Life Sci. 2022 Mar;65(3):515-528 [PMID: 34939160]
  25. Molecules. 2021 Jan 27;26(3): [PMID: 33513965]
  26. Plant Cell. 2005 May;17(5):1360-75 [PMID: 15829600]
  27. BMC Plant Biol. 2019 Jun 24;19(1):274 [PMID: 31234787]
  28. Plant Cell Environ. 2013 Dec;36(12):2207-18 [PMID: 23651319]
  29. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  30. J Ethnopharmacol. 2006 Oct 11;107(3):313-23 [PMID: 16950583]
  31. Planta. 2015 May;241(5):1255-68 [PMID: 25663583]
  32. Nature. 2020 May;581(7806):89-93 [PMID: 32376953]
  33. Phytochemistry. 2001 Aug;57(7):1123-34 [PMID: 11430985]
  34. PLoS Genet. 2016 Nov 3;12(11):e1006416 [PMID: 27812104]
  35. Nucleic Acids Res. 2018 Jul 2;46(W1):W49-W54 [PMID: 29718424]
  36. Plant Cell. 2018 Feb;30(2):272-284 [PMID: 29343505]
  37. J Herb Pharmacother. 2005;5(1):79-93 [PMID: 16093238]
  38. Plant Cell. 2013 Sep;25(9):3570-83 [PMID: 24076976]
  39. Bioinformatics. 2010 Jun 15;26(12):1566-8 [PMID: 20430753]
  40. Science. 2006 Jul 7;313(5783):68-71 [PMID: 16741077]
  41. Biomed Res Int. 2022 Mar 4;2022:9349897 [PMID: 35281611]
  42. Trends Biotechnol. 2007 Nov;25(11):522-9 [PMID: 17936926]
  43. Dev Cell. 2005 Apr;8(4):517-27 [PMID: 15809034]
  44. Nat Plants. 2016 May 23;2(6):16073 [PMID: 27255837]
  45. J Ethnopharmacol. 2015 Jul 1;169:244-62 [PMID: 25858507]
  46. Plant Cell Environ. 2012 Mar;35(3):502-12 [PMID: 22017483]
  47. Nat Commun. 2023 Aug 2;14(1):4651 [PMID: 37532727]
  48. Annu Rev Cell Dev Biol. 2009;25:21-44 [PMID: 19575669]

Word Cloud

Created with Highcharts 10.0.0miRNAstargetsnaturalrubbersequencingidentifiedDEproductionmiRNAmetabolismrubber-producingtwodandelionspeciesrubber-yieldingTkTsincluding53latexbiosynthesisregulatorymodulesMicroRNAswidelyinvolvedvariousaspectsplantgrowthdevelopmentHoweverregulateremainsuncleardandelionsdevelopedalternativecommercialsourcescombinedsmallRNAdegradometargetgenepredictionmRNAidentifyhighlowtotal142108known34novelonesdiscovereddifferentiallyexpressedDegradome145corresponding74TAPIRpsRNATargetrespectivelypredicted165164non-redundantaforementionedGeneontologyGOenrichmentanalysisindicatedmightaffectviaregulatingmacromolecularFourcriticaltypesmiR172-AP2/ERFmiR164-NACmiR160-ARFmiRN19-proteinkinaseinteractionnetworksconstructedindicatingpotentialinvolvementfindingslargedatasetpresentedbeneficialdecipheringrolesmedicinalmetabolitesIdentificationcontrastingabilityTaraxacum

Similar Articles

Cited By