High-resolution genetic linkage map and height-related QTLs in an oil palm () family planted across multiple sites.

Ngoot-Chin Ting, Pek-Lan Chan, Jaap Buntjer, Jared M Ordway, Corey Wischmeyer, Leslie Cheng-Li Ooi, Eng Ti Leslie Low, Marhalil Marjuni, Ravigadevi Sambanthamurthi, Rajinder Singh
Author Information
  1. Ngoot-Chin Ting: Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia.
  2. Pek-Lan Chan: Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia.
  3. Jaap Buntjer: Orion Genomics, Saint Louis, MO 63108 USA.
  4. Jared M Ordway: Orion Genomics, Saint Louis, MO 63108 USA.
  5. Corey Wischmeyer: Orion Genomics, Saint Louis, MO 63108 USA.
  6. Leslie Cheng-Li Ooi: Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia.
  7. Eng Ti Leslie Low: Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia.
  8. Marhalil Marjuni: Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia.
  9. Ravigadevi Sambanthamurthi: Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia.
  10. Rajinder Singh: Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia. ORCID

Abstract

A refined SNP array containing 92,459 probes was developed and applied for chromosome scanning, construction of a high-density genetic linkage map and QTL analysis in a selfed Nigerian oil palm family (T128). Genotyping of the T128 mapping family generated 76,447 good quality SNPs for detailed scanning of aberration and homozygosity in the individual pseudo-chromosomes. Of them, 25,364 polymorphic SNPs were used for linkage analysis resulting in an 84.4% mapping rate. A total of 21,413 SNPs were mapped into 16 linkage groups (LGs), covering a total map length of 1364.5 cM. This genetic map is 16X denser than the previous version used to establish pseudo-chromosomes of the oil palm reference genome published in 2013. The QTLs associated with height, height increment and rachis length were identified in LGs TT05, 06, 08, 15 and 16. The present QTLs as well as those published previously were tagged to the reference genome to determine their chromosomal locations. Almost all the QTLs identified in this study were either close to or co-located with those reported in other populations. Determining the QTL position on chromosomes was also helpful in mining for the underlying candidate genes. In total, 55 putative genes and transcription factors involved in the biosynthesis, conjugation and signalling of the major phytohormones, especially for gibberellins and cell wall morphogenesis were found to be present in the identified genomic QTL regions, and their potential roles in plant dwarfism are discussed.
Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01360-2.

Keywords

References

  1. J Genet. 2020;99: [PMID: 32366730]
  2. Physiol Plant. 2020 Jul;169(3):312-324 [PMID: 32053251]
  3. New Phytol. 2021 Aug;231(3):1088-1104 [PMID: 33909299]
  4. Sci Rep. 2020 Apr 10;10(1):6216 [PMID: 32277156]
  5. BMC Plant Biol. 2018 Nov 29;18(1):309 [PMID: 30497403]
  6. Sci Rep. 2019 Apr 29;9(1):6619 [PMID: 31036825]
  7. Sci Rep. 2015 Feb 04;5:8232 [PMID: 25648560]
  8. Trends Plant Sci. 2012 Jan;17(1):39-46 [PMID: 22051150]
  9. Bioinformatics. 2012 Oct 1;28(19):2537-9 [PMID: 22820204]
  10. Plant Physiol. 2007 Sep;145(1):87-97 [PMID: 17616511]
  11. BMC Plant Biol. 2019 Dec 3;19(1):533 [PMID: 31795941]
  12. BMC Genomics. 2016 Apr 14;17:289 [PMID: 27079197]
  13. Front Plant Sci. 2016 Mar 14;7:294 [PMID: 27014317]
  14. PLoS One. 2019 Aug 7;14(8):e0220626 [PMID: 31390382]
  15. Int J Biol Sci. 2016 Apr 08;12(6):653-66 [PMID: 27194943]
  16. Mol Plant. 2016 Jan 4;9(1):10-20 [PMID: 26415696]
  17. Planta. 2020 Sep 02;252(3):45 [PMID: 32880001]
  18. Plant Cell. 2007 Jan;19(1):32-45 [PMID: 17220201]
  19. Theor Appl Genet. 2010 May;120(8):1673-87 [PMID: 20182696]
  20. Front Plant Sci. 2019 Jul 31;10:985 [PMID: 31417597]
  21. Trends Plant Sci. 2017 Oct;22(10):880-893 [PMID: 28843766]
  22. Plant Cell. 2012 Aug;24(8):3320-32 [PMID: 22942378]
  23. Plant Cell. 2015 Oct;27(10):2829-45 [PMID: 26486445]
  24. Plant J. 2012 Sep;71(6):962-75 [PMID: 22563899]
  25. BMC Bioinformatics. 2005 Feb 15;6:31 [PMID: 15713233]
  26. New Phytol. 2018 Jul;219(2):631-640 [PMID: 29701899]
  27. Plant J. 2016 Apr;86(1):62-74 [PMID: 26919684]
  28. Plant J. 2014 Nov;80(3):462-74 [PMID: 25146977]
  29. Plant Cell. 1995 Jan;7(1):117-29 [PMID: 7696878]
  30. Plant Cell. 2008 Aug;20(8):2059-72 [PMID: 18757555]
  31. PLoS One. 2020 Sep 3;15(9):e0238179 [PMID: 32881902]
  32. Plant Biotechnol J. 2020 May;18(5):1141-1152 [PMID: 31622529]
  33. Genes Dev. 2006 Jul 1;20(13):1790-9 [PMID: 16818609]
  34. Plant Signal Behav. 2014;9(9):e29726 [PMID: 25763707]
  35. Plant Physiol. 2012 Jan;158(1):423-38 [PMID: 22065421]
  36. Plant Mol Biol. 2008 Aug;67(6):659-70 [PMID: 18500650]
  37. Front Plant Sci. 2018 Mar 28;9:390 [PMID: 29643859]
  38. Front Immunol. 2016 May 13;7:186 [PMID: 27242793]
  39. Plant J. 2004 Dec;40(5):772-82 [PMID: 15546359]
  40. Plant Cell Physiol. 2010 Nov;51(11):1854-68 [PMID: 20937610]
  41. Nat Commun. 2014 Jun 30;5:4106 [PMID: 24978855]
  42. BMC Plant Biol. 2020 Jul 29;20(1):356 [PMID: 32727448]
  43. Physiol Mol Biol Plants. 2021 Mar;27(3):587-604 [PMID: 33854286]
  44. Sci Rep. 2017 Jul 21;7(1):6182 [PMID: 28733593]
  45. PLoS Genet. 2014 Mar 13;10(3):e1004154 [PMID: 24625559]
  46. Nature. 2002 Sep 12;419(6903):167-70 [PMID: 12226665]
  47. Front Plant Sci. 2020 Jan 28;10:1751 [PMID: 32047505]
  48. Plant Cell Physiol. 2005 Aug;46(8):1392-9 [PMID: 15979983]
  49. Physiol Mol Biol Plants. 2020 Nov;26(11):2283-2289 [PMID: 33268929]
  50. PLoS One. 2020 Apr 10;15(4):e0231425 [PMID: 32275733]
  51. Nature. 2013 Aug 15;500(7462):340-4 [PMID: 23883930]
  52. Mol Plant. 2017 Apr 3;10(4):590-604 [PMID: 28069545]
  53. Biol Direct. 2017 Sep 8;12(1):21 [PMID: 28886750]
  54. Genomics. 2015 May;105(5-6):288-95 [PMID: 25702931]
  55. Mol Breed. 2017;37(3):20 [PMID: 28255264]
  56. Plant J. 2009 Jun;58(5):803-16 [PMID: 19220793]
  57. Curr Biol. 2004 Jul 27;14(14):1232-8 [PMID: 15268852]
  58. Plant Biotechnol J. 2016 May;14(5):1195-206 [PMID: 26466852]
  59. Front Plant Sci. 2018 Mar 13;9:297 [PMID: 29593761]
  60. Plant Cell. 2009 Dec;21(12):3767-80 [PMID: 20009022]
  61. Proc Natl Acad Sci U S A. 2014 May 27;111(21):7861-6 [PMID: 24821766]
  62. J Integr Plant Biol. 2015 Apr;57(4):396-410 [PMID: 25756224]
  63. Plant Signal Behav. 2020;15(1):1700327 [PMID: 31822153]
  64. Nature. 2013 Aug 15;500(7462):335-9 [PMID: 23883927]
  65. Plant Cell. 2003 Jan;15(1):151-63 [PMID: 12509528]
  66. BMC Genet. 2017 Apr 17;18(1):36 [PMID: 28415964]
  67. Genes (Basel). 2020 Jul 21;11(7): [PMID: 32708151]
  68. Planta. 2021 Feb 05;253(2):63 [PMID: 33544231]
  69. Proc Natl Acad Sci U S A. 2021 Apr 27;118(17): [PMID: 33888582]
  70. Front Plant Sci. 2018 Oct 08;9:1387 [PMID: 30349547]
  71. Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13917-13922 [PMID: 27849615]
  72. Front Plant Sci. 2015 Mar 27;6:190 [PMID: 25870604]
  73. Nat Commun. 2013;4:2625 [PMID: 24129639]
  74. Database (Oxford). 2018 Jan 1;2018: [PMID: 30239681]

Word Cloud

Created with Highcharts 10.0.0linkagemappalmQTLsgeneticQTLoilfamilySNPstotalheightidentifiedscanninganalysisNigerianT128mappingaberrationpseudo-chromosomesused16LGslengthversionreferencegenomepublishedincrementpresentgenesrefinedSNParraycontaining92459probesdevelopedappliedchromosomeconstructionhigh-densityselfedGenotypinggenerated76447goodqualitydetailedhomozygosityindividual25364polymorphicresulting844%rate21413mappedgroupscovering13645 cM16Xdenserpreviousestablish2013associatedrachisTT05060815wellpreviouslytaggeddeterminechromosomallocationsAlmoststudyeithercloseco-locatedreportedpopulationsDeterminingpositionchromosomesalsohelpfulminingunderlyingcandidate55putativetranscriptionfactorsinvolvedbiosynthesisconjugationsignallingmajorphytohormonesespeciallygibberellinscellwallmorphogenesisfoundgenomicregionspotentialrolesplantdwarfismdiscussedSupplementaryInformation:onlinecontainssupplementarymaterialavailable101007/s12298-023-01360-2High-resolutionheight-relatedplantedacrossmultiplesitesChromosomalDwarfElaeisguineensisMarker-assisted-selectiongermplasmSlow

Similar Articles

Cited By