Towards a mathematical understanding of invasion resistance in multispecies communities.

Erida Gjini, Sten Madec
Author Information
  1. Erida Gjini: Center for Computational and Stochastic Mathematics, Instituto Superior Tecnico, Lisbon, Portugal. ORCID
  2. Sten Madec: Laboratory of Mathematics, University of Tours, Tours, France.

Abstract

Multispecies community composition and dynamics are key to health and disease across biological systems, a prominent example being microbial ecosystems. Explaining the forces that govern diversity and resilience in the microbial consortia making up our body's defences remains a challenge. In this, theoretical models are crucial, to bridge the gap between species dynamics and underlying mechanisms and to develop analytic insight. Here we propose a replicator equation framework to model multispecies dynamics where an explicit notion of invasion resistance of a system emerges and can be studied explicitly. For illustration, we derive the conceptual link between such replicator equation and microbial species' growth and interaction traits, stemming from micro-scale environmental modification. Within this replicator framework, mean invasion fitness arises, evolves dynamically, and may undergo critical predictable shifts with global environmental changes. This mathematical approach clarifies the key role of this resident system trait for invader success, and highlights interaction principles among species that optimize their collective resistance to invasion. We propose this model based on the replicator equation as a powerful new avenue to study, test and validate mechanisms of invasion resistance and colonization in multispecies microbial ecosystems and beyond.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.c.6915884
Dryad | 10.5061/dryad.0k6djhb60

References

  1. Bull Math Biol. 2020 Oct 29;82(11):142 [PMID: 33119836]
  2. Science. 2013 Jul 5;341(6141):1237439 [PMID: 23828941]
  3. Appl Environ Microbiol. 2005 Jul;71(7):3692-700 [PMID: 16000778]
  4. R Soc Open Sci. 2021 Jul 21;8(7):201378 [PMID: 34295510]
  5. PLoS Biol. 2012;10(11):e1001424 [PMID: 23185130]
  6. R Soc Open Sci. 2023 Nov 15;10(11):231034 [PMID: 38026034]
  7. PLoS Comput Biol. 2013;9(12):e1003388 [PMID: 24348232]
  8. Proc Soc Exp Biol Med. 1954 May;86(1):132-7 [PMID: 13177610]
  9. Ecology. 2007 Jan;88(1):3-17 [PMID: 17489447]
  10. FEMS Microbiol Ecol. 2021 Jun 4;97(6): [PMID: 34021563]
  11. Trends Ecol Evol. 2019 Feb;34(2):121-131 [PMID: 30514581]
  12. Elife. 2021 Jun 07;10: [PMID: 34096867]
  13. ISME J. 2007 May;1(1):56-66 [PMID: 18043614]
  14. Curr Biol. 2020 Oct 5;30(19):R1176-R1188 [PMID: 33022263]
  15. ISME J. 2016 Nov;10(11):2557-2568 [PMID: 27022995]
  16. Nat Ecol Evol. 2020 Mar;4(3):356-365 [PMID: 32094535]
  17. Elife. 2017 Mar 28;6: [PMID: 28350295]
  18. Nature. 1972 Aug 18;238(5364):413-4 [PMID: 4559589]
  19. Nat Rev Microbiol. 2012 Jul 16;10(8):538-50 [PMID: 22796884]
  20. J Theor Biol. 2002 Nov 7;219(1):93-8 [PMID: 12392978]
  21. ISME J. 2021 Apr;15(4):939-948 [PMID: 33219299]
  22. Science. 2015 Nov 6;350(6261):663-6 [PMID: 26542567]
  23. J Clin Invest. 2010 Dec;120(12):4332-41 [PMID: 21099116]
  24. ISME J. 2014 May;8(5):953-62 [PMID: 24285359]
  25. Curr Biol. 2019 Jun 3;29(11):R521-R537 [PMID: 31163166]
  26. Nat Microbiol. 2020 Apr;5(4):630-641 [PMID: 31959968]
  27. Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5638-42 [PMID: 21415368]
  28. Nat Ecol Evol. 2017 Mar 27;1(5):109 [PMID: 28812687]
  29. Clin Infect Dis. 2012 Apr;54(8):1053-63 [PMID: 22412059]
  30. PLoS Comput Biol. 2021 Jan 22;17(1):e1008643 [PMID: 33481772]
  31. Curr Opin Microbiol. 2017 Aug;38:114-121 [PMID: 28591676]
  32. Nature. 2012 Sep 13;489(7415):220-30 [PMID: 22972295]
  33. N Engl J Med. 2013 Jan 31;368(5):407-15 [PMID: 23323867]
  34. Brief Bioinform. 2012 Nov;13(6):769-80 [PMID: 22589385]
  35. Nat Ecol Evol. 2020 Mar;4(3):376-383 [PMID: 32042124]
  36. Elife. 2016 Jun 16;5: [PMID: 27310530]
  37. Immunol Rev. 2017 Sep;279(1):90-105 [PMID: 28856737]
  38. Evolution. 2015 May;69(5):1313-20 [PMID: 25787308]
  39. Microb Ecol Health Dis. 2015 Feb 02;26:26191 [PMID: 25651997]
  40. Clin Infect Dis. 2008 Jan 15;46 Suppl 1:S19-31 [PMID: 18177218]
  41. Nat Rev Microbiol. 2013 Feb;11(2):95-105 [PMID: 23268227]
  42. Trends Ecol Evol. 2006 Apr;21(4):178-85 [PMID: 16701083]
  43. Ecol Evol. 2021 Jun 06;11(13):8456-8474 [PMID: 34257910]
  44. J Math Biol. 2023 Aug 28;87(3):48 [PMID: 37640832]
  45. Immunology. 2013 Jan;138(1):1-11 [PMID: 23240815]
  46. J Theor Biol. 2022 Apr 7;538:111041 [PMID: 35114194]

Word Cloud

Created with Highcharts 10.0.0invasionmicrobialreplicatorresistanceequationmultispeciesdynamicssystemcommunitykeyecosystemsspeciesmechanismsproposeframeworkmodelinteractionenvironmentalfitnessmathematicalcolonizationMultispeciescompositionhealthdiseaseacrossbiologicalsystemsprominentexampleExplainingforcesgoverndiversityresilienceconsortiamakingbody'sdefencesremainschallengetheoreticalmodelscrucialbridgegapunderlyingdevelopanalyticinsightexplicitnotionemergescanstudiedexplicitlyillustrationderiveconceptuallinkspecies'growthtraitsstemmingmicro-scalemodificationWithinmeanarisesevolvesdynamicallymayundergocriticalpredictableshiftsglobalchangesapproachclarifiesroleresidenttraitinvadersuccesshighlightsprinciplesamongoptimizecollectivebasedpowerfulnewavenuestudytestvalidatebeyondTowardsunderstandingcommunitiesecologypairwisematrixinvasibility

Similar Articles

Cited By