Local domain generalization with low-rank constraint for EEG-based emotion recognition.

Jianwen Tao, Yufang Dan, Di Zhou
Author Information
  1. Jianwen Tao: Institute of Artificial Intelligence Application, Ningbo Polytechnic, Zhejiang, China.
  2. Yufang Dan: Institute of Artificial Intelligence Application, Ningbo Polytechnic, Zhejiang, China.
  3. Di Zhou: Industrial Technological Institute of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou, China.

Abstract

As an important branch in the field of affective computing, emotion recognition based on electroencephalography (EEG) faces a long-standing challenge due to individual diversities. To conquer this challenge, domain adaptation (DA) or domain generalization (i.e., DA without target domain in the training stage) techniques have been introduced into EEG-based emotion recognition to eliminate the distribution discrepancy between different subjects. The preceding DA or domain generalization (DG) methods mainly focus on aligning the global distribution shift between source and target domains, yet without considering the correlations between the subdomains within the source domain and the target domain of interest. Since the ignorance of the fine-grained distribution information in the source may still bind the DG expectation on EEG datasets with multimodal structures, multiple patches (or subdomains) should be reconstructed from the source domain, on which multi-classifiers could be learned collaboratively. It is expected that accurately aligning relevant subdomains by excavating multiple distribution patterns within the source domain could further boost the learning performance of DG/DA. Therefore, we propose in this work a novel DG method for EEG-based emotion recognition, i.e., Local Domain Generalization with low-rank constraint (LDG). Specifically, the source domain is firstly partitioned into multiple local domains, each of which contains only one positive sample and its positive neighbors and negative neighbors. Multiple subject-invariant classifiers on different subdomains are then co-learned in a unified framework by minimizing local regression loss with low-rank regularization for considering the shared knowledge among local domains. In the inference stage, the learned local classifiers are discriminatively selected according to their importance of adaptation. Extensive experiments are conducted on two benchmark databases (DEAP and SEED) under two cross-validation evaluation protocols, i.e., cross-subject within-dataset and cross-dataset within-session. The experimental results under the 5-fold cross-validation demonstrate the superiority of the proposed method compared with several state-of-the-art methods.

Keywords

References

  1. Front Neurosci. 2022 Apr 27;16:850906 [PMID: 35573289]
  2. IEEE Trans Image Process. 2010 Jul;19(7):1921-32 [PMID: 20215078]
  3. Front Neurorobot. 2022 Aug 31;16:873239 [PMID: 36119719]
  4. IEEE Trans Pattern Anal Mach Intell. 2015 Jan;37(1):54-66 [PMID: 26353208]
  5. IEEE Trans Neural Netw. 2011 Feb;22(2):199-210 [PMID: 21095864]
  6. J Neural Eng. 2023 Mar 23;20(2): [PMID: 36812637]
  7. IEEE Trans Pattern Anal Mach Intell. 2012 Mar;34(3):465-79 [PMID: 21646679]
  8. IEEE Trans Image Process. 2018 Nov;27(11):5214-5224 [PMID: 29994676]
  9. Science. 2002 Nov 8;298(5596):1191-4 [PMID: 12424363]
  10. IEEE Trans Cybern. 2020 Jul;50(7):3281-3293 [PMID: 30932860]
  11. Front Neurosci. 2022 Sep 15;16:1009581 [PMID: 36188458]
  12. IEEE Trans Pattern Anal Mach Intell. 2014 May;36(5):928-41 [PMID: 26353227]
  13. Comput Biol Med. 2016 Dec 1;79:205-214 [PMID: 27810626]
  14. Front Hum Neurosci. 2020 Dec 16;14:589001 [PMID: 33390918]
  15. Front Neurosci. 2021 Dec 07;15:778488 [PMID: 34949983]
  16. IEEE Trans Pattern Anal Mach Intell. 2018 May;40(5):1114-1127 [PMID: 28534767]
  17. Comput Math Methods Med. 2013;2013:573734 [PMID: 23634176]
  18. IEEE Trans Neural Netw Learn Syst. 2018 Feb;29(2):259-272 [PMID: 27834652]
  19. Sensors (Basel). 2017 May 03;17(5): [PMID: 28467371]
  20. Front Comput Neurosci. 2022 Aug 12;16:942979 [PMID: 36034935]
  21. Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:6627-30 [PMID: 24111262]
  22. Front Neurosci. 2020 Dec 23;14:622759 [PMID: 33424547]
  23. IEEE Trans Pattern Anal Mach Intell. 2017 Jul;39(7):1414-1430 [PMID: 28113617]
  24. IEEE Trans Pattern Anal Mach Intell. 2022 Apr;44(4):1793-1804 [PMID: 33035160]
  25. Front Neurosci. 2018 Mar 19;12:162 [PMID: 29615853]
  26. IEEE Trans Neural Netw Learn Syst. 2018 Feb;29(2):310-323 [PMID: 28113958]
  27. Front Neurosci. 2021 Jun 23;15:690044 [PMID: 34276295]
  28. Front Psychiatry. 2022 Mar 15;12:837149 [PMID: 35368726]
  29. Front Neurosci. 2021 May 13;15:677106 [PMID: 34054422]
  30. IEEE Trans Neural Netw Learn Syst. 2021 Apr;32(4):1713-1722 [PMID: 32365037]
  31. IEEE Trans Pattern Anal Mach Intell. 2007 Jan;29(1):40-51 [PMID: 17108382]
  32. IEEE Trans Pattern Anal Mach Intell. 2013 Jun;35(6):1284-97 [PMID: 23599048]
  33. IEEE Trans Pattern Anal Mach Intell. 2010 May;32(5):770-87 [PMID: 20299704]

Word Cloud

Created with Highcharts 10.0.0domainsourceemotionrecognitionlocalgeneralizationdistributionsubdomainsadaptationDAietargetEEG-basedDGdomainsmultiplelow-rankEEGchallengewithoutstagedifferentmethodsaligningconsideringwithinlearnedlearningmethodLocalconstraintpositiveneighborsclassifierstwocross-validationimportantbranchfieldaffectivecomputingbasedelectroencephalographyfaceslong-standingdueindividualdiversitiesconquertrainingtechniquesintroducedeliminatediscrepancysubjectsprecedingmainlyfocusglobalshiftyetcorrelationsinterestSinceignorancefine-grainedinformationmaystillbindexpectationdatasetsmultimodalstructurespatchesreconstructedmulti-classifierscollaborativelyexpectedaccuratelyrelevantexcavatingpatternsboostperformanceDG/DAThereforeproposeworknovelDomainGeneralizationLDGSpecificallyfirstlypartitionedcontainsonesamplenegativeMultiplesubject-invariantco-learnedunifiedframeworkminimizingregressionlossregularizationsharedknowledgeamonginferencediscriminativelyselectedaccordingimportanceExtensiveexperimentsconductedbenchmarkdatabasesDEAPSEEDevaluationprotocolscross-subjectwithin-datasetcross-datasetwithin-sessionexperimentalresults5-folddemonstratesuperiorityproposedcomparedseveralstate-of-the-artelectroencephalogramsubdomain

Similar Articles

Cited By

No available data.