Transcriptional profiles of non-neuronal and immune cells in mouse trigeminal ganglia.

Jennifer Mecklenburg, Sergey A Shein, Mostafa Malmir, Anahit H Hovhannisyan, Korri Weldon, Yi Zou, Zhao Lai, Yu-Fang Jin, Shivani Ruparel, Alexei V Tumanov, Armen N Akopian
Author Information
  1. Jennifer Mecklenburg: Department of Endodontics, School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, United States.
  2. Sergey A Shein: Microbiology, Immunology & Molecular Genetics Departments, School of Medicine, UTHSCSA, San Antonio, TX, United States.
  3. Mostafa Malmir: Department of Electrical and Computer Engineering, the University of Texas at San Antonio, San Antonio, TX, United States.
  4. Anahit H Hovhannisyan: Department of Endodontics, School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, United States.
  5. Korri Weldon: Molecular Medicine, School of Medicine, UTHSCSA, San Antonio, TX, United States.
  6. Yi Zou: Molecular Medicine, School of Medicine, UTHSCSA, San Antonio, TX, United States.
  7. Zhao Lai: Molecular Medicine, School of Medicine, UTHSCSA, San Antonio, TX, United States.
  8. Yu-Fang Jin: Department of Electrical and Computer Engineering, the University of Texas at San Antonio, San Antonio, TX, United States.
  9. Shivani Ruparel: Department of Endodontics, School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, United States.
  10. Alexei V Tumanov: Microbiology, Immunology & Molecular Genetics Departments, School of Medicine, UTHSCSA, San Antonio, TX, United States.
  11. Armen N Akopian: Department of Endodontics, School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, United States.

Abstract

Non-neuronal cells constitute 90%-95% of sensory ganglia. These cells, especially glial and immune cells, play critical roles in the modulation of sensory neurons. This study aimed to identify, profile, and summarize the types of trigeminal ganglion (TG) non-neuronal cells in naïve male mice using published and our own data generated by single-cell RNA sequencing, flow cytometry, and immunohistochemistry. TG has five types of non-neuronal cells, namely, glial, fibroblasts, smooth muscle, endothelial, and immune cells. There is an agreement among publications for glial, fibroblasts, smooth muscle, and endothelial cells. Based on gene profiles, glial cells were classified as myelinated and non-myelinated Schwann cells and satellite glial cells. has dominant expression in Schwann cells, and is specific for SCG. Two types of Col1a2 fibroblasts located throughout TG were distinguished. TG smooth muscle and endothelial cells in the blood vessels were detected using well-defined markers. Our study reported three types of macrophages (Mph) and four types of neutrophils (Neu) in TG. Mph were located in the neuronal bodies and nerve fibers and were sub-grouped by unique transcriptomic profiles with , , and as markers. A comparison of databases showed that type 1 Mph is similar to choroid plexus-low (CP) border-associated Mph (BAMs). Type 2 Mph has the highest prediction score with CP BAMs, while type 3 Mph is distinct. S100a8 Neu were located in the dura surrounding TG and were sub-grouped by clustering and expressions of , , , , and . Integrative analysis of published datasets indicated that Neu-1, Neu-2, and Neu-3 are similar to the brain Neu-1 group, while Neu-4 has a resemblance to the monocyte-derived cells. Overall, the generated and summarized datasets on non-neuronal TG cells showed a unique composition of myeloid cell types in TG and could provide essential and fundamental information for studies on cell plasticity, interactomic networks between neurons and non-neuronal cells, and function during a variety of pain conditions in the head and neck regions.

Keywords

References

  1. Nat Commun. 2020 Sep 29;11(1):4891 [PMID: 32994417]
  2. Cell Tissue Res. 2023 Jul;393(1):17-36 [PMID: 37079097]
  3. Cell. 2020 Sep 17;182(6):1606-1622.e23 [PMID: 32888429]
  4. Neurotherapeutics. 2020 Jul;17(3):846-860 [PMID: 32820378]
  5. Pain Rep. 2021 Mar 09;6(1):e883 [PMID: 33981926]
  6. Nat Commun. 2020 Jan 14;11(1):264 [PMID: 31937758]
  7. Cells. 2023 Mar 22;12(6): [PMID: 36980304]
  8. Nat Commun. 2022 Aug 8;13(1):4616 [PMID: 35941103]
  9. Immunity. 2017 May 16;46(5):849-862.e7 [PMID: 28514690]
  10. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  11. Science. 2016 Nov 4;354(6312):572-577 [PMID: 27811267]
  12. Glia. 2013 Oct;61(10):1571-81 [PMID: 23918214]
  13. IEEE Trans Neural Netw Learn Syst. 2023 Jun 21;PP: [PMID: 37342947]
  14. Nat Commun. 2021 Mar 8;12(1):1510 [PMID: 33686078]
  15. Front Immunol. 2022 May 19;13:867260 [PMID: 35663975]
  16. Immunity. 2018 Mar 20;48(3):599 [PMID: 29562204]
  17. Nature. 2020 Jan;577(7790):392-398 [PMID: 31915380]
  18. Arthritis Res Ther. 2018 May 2;20(1):80 [PMID: 29720243]
  19. Cell Rep. 2022 Feb 1;38(5):110328 [PMID: 35108545]
  20. Proc Natl Acad Sci U S A. 2023 Apr 25;120(17):e2211631120 [PMID: 37071676]
  21. Nat Neurosci. 2020 May;23(5):676-689 [PMID: 32284604]
  22. Brain Behav Immun. 2023 Oct;113:401-414 [PMID: 37557960]
  23. eNeuro. 2021 Oct 12;8(5): [PMID: 34580157]
  24. Hum Mol Genet. 2021 Nov 16;30(23):2225-2239 [PMID: 34230963]
  25. Neuron. 2015 Jun 17;86(6):1393-406 [PMID: 26087165]
  26. Curr Pharm Des. 2018;24(20):2241-2249 [PMID: 30014796]
  27. Neuron. 2020 Oct 14;108(1):128-144.e9 [PMID: 32810432]
  28. Front Pain Res (Lausanne). 2021 Mar 10;2:646068 [PMID: 35295432]
  29. Front Mol Neurosci. 2023 Feb 02;16:1117065 [PMID: 36818656]
  30. Sci Signal. 2021 Mar 16;14(674): [PMID: 33727337]
  31. Cell. 2008 May 2;133(3):475-85 [PMID: 18455988]
  32. Cell Rep. 2022 Jul 19;40(3):111130 [PMID: 35858549]
  33. Nat Immunol. 2012 Sep;13(9):888-99 [PMID: 22797772]
  34. Gut. 2009 Jun;58(6):859-68 [PMID: 19136508]
  35. Nat Neurosci. 2015 Jan;18(1):145-53 [PMID: 25420068]
  36. Pain. 2021 Apr 1;162(4):1068-1081 [PMID: 33021564]
  37. Immunity. 2016 Sep 20;45(3):669-684 [PMID: 27637149]
  38. Neuron. 2022 Jun 1;110(11):1806-1821.e8 [PMID: 35349784]
  39. Nat Neurosci. 2019 Jun;22(6):1021-1035 [PMID: 31061494]
  40. Neurobiol Pain. 2023 Mar 21;13:100126 [PMID: 37179769]
  41. Nat Neurosci. 2016 Jan;19(1):94-101 [PMID: 26642091]
  42. Neuron. 2016 Sep 7;91(5):1085-1096 [PMID: 27568517]
  43. Neurooncol Adv. 2021 May 04;3(1):vdab031 [PMID: 34286275]
  44. Cells. 2021 Jul 24;10(8): [PMID: 34440650]
  45. Sci Rep. 2020 Sep 17;10(1):15278 [PMID: 32943709]

Grants

  1. R01 DE029187/NIDCR NIH HHS
  2. P30 CA054174/NCI NIH HHS
  3. S10 OD030432/NIH HHS
  4. S10 OD021805/NIH HHS
  5. UC2 AR082195/NIAMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0cellsTGtypesMphglialnon-neuronalimmunegangliatrigeminalfibroblastssmoothmuscleendothelialprofileslocatedsensoryneuronsstudyusingpublishedgeneratedsingle-cellSchwannmarkersmacrophagesneutrophilsNeusub-groupeduniqueshowedtypesimilarCPBAMsdatasetsNeu-1cellNon-neuronalconstitute90%-95%especiallyplaycriticalrolesmodulationaimedidentifyprofilesummarizeganglionnaïvemalemicedataRNAsequencingflowcytometryimmunohistochemistryfivenamelyagreementamongpublicationsBasedgeneclassifiedmyelinatednon-myelinatedsatellitedominantexpressionspecificSCGTwoCol1a2throughoutdistinguishedbloodvesselsdetectedwell-definedreportedthreefourneuronalbodiesnervefiberstranscriptomiccomparisondatabases1choroidplexus-lowborder-associatedType2highestpredictionscore3distinctS100a8durasurroundingclusteringexpressionsIntegrativeanalysisindicatedNeu-2Neu-3braingroupNeu-4resemblancemonocyte-derivedOverallsummarizedcompositionmyeloidprovideessentialfundamentalinformationstudiesplasticityinteractomicnetworksfunctionvarietypainconditionsheadneckregionsTranscriptionalmousegliaRNA-seqstromal

Similar Articles

Cited By (5)