Integrative analysis of non-targeted metabolome and transcriptome reveals the mechanism of volatile formation in pepper fruit.

Yuhua Liu, Jiahao Zhou, Cheng Yi, Fengqingyang Chen, Yan Liu, Yi Liao, Zhuqing Zhang, Wei Liu, Junheng Lv
Author Information
  1. Yuhua Liu: College of Life Sciences, Hengyang Normal University, Hengyang, Hunan, China.
  2. Jiahao Zhou: College of Life Sciences, Hengyang Normal University, Hengyang, Hunan, China.
  3. Cheng Yi: College of Life Sciences, Hengyang Normal University, Hengyang, Hunan, China.
  4. Fengqingyang Chen: College of Life Sciences, Hengyang Normal University, Hengyang, Hunan, China.
  5. Yan Liu: College of Life Sciences, Hengyang Normal University, Hengyang, Hunan, China.
  6. Yi Liao: College of Life Sciences, Hengyang Normal University, Hengyang, Hunan, China.
  7. Zhuqing Zhang: Vegetable Institution of Hunan Academy of Agricultural Science, Changsha, Hunan, China.
  8. Wei Liu: College of Medical Technology, Hunan Polytechnic of Environment and Biology, Hengyang, Hunan, China.
  9. Junheng Lv: Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China.

Abstract

aroma is a key inherent quality attributes of pepper fruit, yet the underlying mechanisms of aroma compound biosynthesis remain unclear. In this study, the volatile profile of the QH (cultivated ) and WH (cultivated ) pepper varieties were putatively identified during fruit development using gas chromatography-mass spectrometry (GC-MS). The results identified 203 volatiles in pepper, and most of the esters, terpenes, aldehydes and alcohols were significantly down-regulated with fruit ripening. The comparison of volatile components between varieties revealed that aldehydes and alcohols were highly expressed in the WH fruit, while esters and terpenes with fruity or floral aroma were generally highly accumulated in the QH fruit, providing QH with a fruity odor. Transcriptome analysis demonstrated the close relationship between the synthesis of volatiles and the fatty acid and terpene metabolic pathways, and the high expression of the , and genes was key in determining the accumulation of volatiles in pepper fruit. Furthermore, integrative metabolome and transcriptome analysis revealed that 208 differentially expressed genes were highly correlated with 114 volatiles, and the transcription factors of , , and were identified as fundamental for the regulation of volatile synthesis in pepper fruit. Our results extend the understanding of the synthesis and accumulation of volatiles in pepper fruit.

Keywords

References

  1. J Exp Bot. 2020 Jan 1;71(1):330-343 [PMID: 31557301]
  2. BMC Genomics. 2013 May 23;14:343 [PMID: 23701715]
  3. Front Plant Sci. 2022 Aug 26;13:946629 [PMID: 36092423]
  4. J Exp Bot. 2011 Jan;62(3):1133-43 [PMID: 21068208]
  5. J Sci Food Agric. 2020 May;100(7):3087-3098 [PMID: 32083310]
  6. Food Chem. 2020 Feb 15;306:125629 [PMID: 31629298]
  7. BMC Plant Biol. 2020 Jan 6;20(1):7 [PMID: 31906915]
  8. Plant Mol Biol. 2018 Nov;98(4-5):375-387 [PMID: 30317456]
  9. Science. 2000 Jul 14;289(5477):295-7 [PMID: 10894776]
  10. Int J Mol Sci. 2023 Apr 26;24(9): [PMID: 37175606]
  11. Plant Physiol. 2004 Aug;135(4):1865-78 [PMID: 15326278]
  12. J Exp Bot. 2010 Sep;61(14):3847-64 [PMID: 20732878]
  13. J Exp Bot. 2017 Oct 13;68(17):4929-4938 [PMID: 28992329]
  14. Food Chem. 2019 Jul 30;287:232-240 [PMID: 30857694]
  15. J Agric Food Chem. 2022 Jun 15;70(23):7188-7201 [PMID: 35654756]
  16. Food Res Int. 2021 Sep;147:110457 [PMID: 34399457]
  17. Front Plant Sci. 2021 Aug 03;12:710826 [PMID: 34413870]
  18. Plant Cell. 2005 May;17(5):1612-24 [PMID: 15805488]
  19. Plant Sci. 2020 Apr;293:110422 [PMID: 32081270]
  20. Plant Cell Physiol. 2015 May;56(5):930-42 [PMID: 25657344]
  21. Food Chem. 2014 Dec 15;165:540-6 [PMID: 25038709]
  22. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  23. Int J Mol Sci. 2020 Feb 10;21(3): [PMID: 32050562]
  24. Front Plant Sci. 2021 Dec 10;12:765897 [PMID: 34956263]
  25. BMC Plant Biol. 2022 Aug 9;22(1):395 [PMID: 35945501]
  26. Bioinformatics. 2018 Sep 1;34(17):i884-i890 [PMID: 30423086]
  27. Hortic Res. 2021 May 1;8(1):95 [PMID: 33931596]
  28. J Sci Food Agric. 2011 Jul;91(9):1598-611 [PMID: 21445890]
  29. Plant Cell. 2012 Jun;24(6):2635-48 [PMID: 22669881]
  30. J Agric Food Chem. 2010 May 26;58(10):6157-65 [PMID: 20415420]
  31. Plant Sci. 2021 Dec;313:111083 [PMID: 34763868]
  32. BMC Plant Biol. 2021 May 24;21(1):231 [PMID: 34030661]
  33. Recent Pat Food Nutr Agric. 2011 Jan;3(1):9-16 [PMID: 21114471]
  34. Theor Appl Genet. 2014 Feb;127(2):373-90 [PMID: 24185820]
  35. Plant Cell. 2010 Jun;22(6):1961-76 [PMID: 20543029]
  36. Plant J. 2004 Oct;40(1):35-46 [PMID: 15361139]
  37. Food Chem. 2021 Sep 1;355:129685 [PMID: 33799248]
  38. Plant Physiol Biochem. 2018 Sep;130:205-214 [PMID: 29990773]

Word Cloud

Created with Highcharts 10.0.0fruitpeppervolatilevolatilesQHidentifiedhighlyanalysissynthesismetabolometranscriptomekeyaromacultivatedWHvarietiesresultsestersterpenesaldehydesalcoholsrevealedexpressedfruitygenesaccumulationtranscriptionfactorsAromainherentqualityattributesyetunderlyingmechanismscompoundbiosynthesisremainunclearstudyprofileputativelydevelopmentusinggaschromatography-massspectrometryGC-MS203significantlydown-regulatedripeningcomparisoncomponentsfloralgenerallyaccumulatedprovidingodorTranscriptomedemonstratedcloserelationshipfattyacidterpenemetabolicpathwayshighexpressiondeterminingFurthermoreintegrative208differentiallycorrelated114fundamentalregulationextendunderstandingIntegrativenon-targetedrevealsmechanismformationorganiccompounds

Similar Articles

Cited By (3)