Diversity and plant growth promoting ability of rice root-associated bacteria in Burkina-Faso and cross-comparison with metabarcoding data.

Moussa Sondo, Issa Wonni, Kadidia Koïta, Isabelle Rimbault, Mariam Barro, Charlotte Tollenaere, Lionel Moulin, Agnieszka Klonowska
Author Information
  1. Moussa Sondo: INERA, Institut de l'Environnement et de Recherches Agricoles du Burkina Faso, Bobo-Dioulasso, Burkina Faso.
  2. Issa Wonni: INERA, Institut de l'Environnement et de Recherches Agricoles du Burkina Faso, Bobo-Dioulasso, Burkina Faso.
  3. Kadidia Koïta: Université Joseph Ki Zerbo, Ouagadougou, Burkina Faso.
  4. Isabelle Rimbault: PHIM Plant Health Institute, IRD, CIRAD, INRAE, Institut Agro, Univ. Montpellier, Montpellier, France.
  5. Mariam Barro: INERA, Institut de l'Environnement et de Recherches Agricoles du Burkina Faso, Bobo-Dioulasso, Burkina Faso.
  6. Charlotte Tollenaere: PHIM Plant Health Institute, IRD, CIRAD, INRAE, Institut Agro, Univ. Montpellier, Montpellier, France.
  7. Lionel Moulin: PHIM Plant Health Institute, IRD, CIRAD, INRAE, Institut Agro, Univ. Montpellier, Montpellier, France.
  8. Agnieszka Klonowska: PHIM Plant Health Institute, IRD, CIRAD, INRAE, Institut Agro, Univ. Montpellier, Montpellier, France. ORCID

Abstract

Plant-associated bacteria are essential partners in plant health and development. In addition to taking advantage of the rapid advances recently achieved in high-throughput sequencing approaches, studies on plant-microbiome interactions require experiments with culturable bacteria. A study on the rice root microbiome was recently initiated in Burkina Faso. As a follow up, the aim of the present study was to develop a collection of corresponding rice root-associated bacteria covering maximum diversity, to assess the diversity of the obtained isolates based on the culture medium used, and to describe the taxonomy, phenotype and abundance of selected isolates in the rice microbiome. More than 3,000 isolates were obtained using five culture media (TSA, NGN, NFb, PCAT, Baz). The 16S rRNA fragment sequencing of 1,013 selected isolates showed that our working collection covered four bacterial phyla (Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes) and represented 33% of the previously described diversity of the rice root microbiome at the order level. Phenotypic in vitro analysis of the plant growth promoting capacity of the isolates revealed an overall ammonium production and auxin biosynthesis capacity, while siderophore production and phosphate solubilisation were enriched in Burkholderia, Ralstonia, Acinetobacter and Pseudomonas species. Of 45 representative isolates screened for growth promotion on seedlings of two rice cultivars, five showed an ability to improve the growth of both cultivars, while five others were effective on only one cultivar. The best results were obtained with Pseudomonas taiwanensis ABIP 2315 and Azorhizobium caulinodans ABIP 1219, which increased seedling growth by 158% and 47%, respectively. Among the 14 best performing isolates, eight appeared to be abundant in the rice root microbiome dataset from previous study. The findings of this research contribute to the in vitro and in planta PGP capacities description of rice root-associated bacteria and their potential importance for plants by providing, for the first time, insight into their prevalence in the rice root microbiome.

References

  1. Plant Physiol. 1951 Jan;26(1):192-5 [PMID: 16654351]
  2. Front Plant Sci. 2018 Jan 04;8:2191 [PMID: 29354144]
  3. Mol Plant Microbe Interact. 2020 Oct;33(10):1222-1231 [PMID: 32597697]
  4. Front Microbiol. 2017 Nov 28;8:2264 [PMID: 29234309]
  5. Environ Microbiome. 2023 May 17;18(1):42 [PMID: 37198640]
  6. Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):7368-7373 [PMID: 29941552]
  7. PLoS One. 2016 Nov 17;11(11):e0166578 [PMID: 27855202]
  8. Microorganisms. 2021 Aug 11;9(8): [PMID: 34442793]
  9. Plant Dis. 2021 Dec;105(12):3889-3899 [PMID: 34142847]
  10. Environ Microbiol. 2017 Apr;19(4):1407-1424 [PMID: 27871147]
  11. FEMS Microbiol Ecol. 2022 Aug 25;98(9): [PMID: 35867879]
  12. Gene. 1992 Feb 1;111(1):119-24 [PMID: 1372279]
  13. New Phytol. 2005 Jan;165(1):317-28 [PMID: 15720643]
  14. Appl Environ Microbiol. 2002 May;68(5):2391-6 [PMID: 11976113]
  15. J Adv Res. 2019 Apr 19;19:15-27 [PMID: 31341666]
  16. Int J Syst Evol Microbiol. 2001 Nov;51(Pt 6):1965-1968 [PMID: 11760935]
  17. Southeast Asian J Trop Med Public Health. 1985 Jun;16(2):265-7 [PMID: 4071198]
  18. mBio. 2017 Jul 18;8(4): [PMID: 28720730]
  19. Antonie Van Leeuwenhoek. 2014 Jul;106(1):85-125 [PMID: 24445491]
  20. Nat Commun. 2015 Oct 13;6:8493 [PMID: 26460590]
  21. Appl Environ Microbiol. 2022 Mar 22;88(6):e0253721 [PMID: 35138928]
  22. Plant Dis. 2011 Jan;95(1):72 [PMID: 30743690]
  23. Curr Opin Microbiol. 2019 Jun;49:97-102 [PMID: 31734603]
  24. Nature. 2015 Dec 17;528(7582):364-9 [PMID: 26633631]
  25. Plant Physiol Biochem. 2016 Sep;106:295-304 [PMID: 27231874]
  26. Nat Rev Microbiol. 2021 Apr;19(4):225-240 [PMID: 33093661]
  27. Front Plant Sci. 2015 Jun 30;6:485 [PMID: 26175749]
  28. Mol Biol Evol. 1987 Jul;4(4):406-25 [PMID: 3447015]
  29. Arch Microbiol. 1975 Sep 30;105(1):1-12 [PMID: 1190952]
  30. FEMS Microbiol Ecol. 2019 May 1;95(5): [PMID: 30916760]
  31. Nat Biotechnol. 2020 Jun;38(6):685-688 [PMID: 32483366]
  32. Appl Environ Microbiol. 2003 Dec;69(12):7210-5 [PMID: 14660368]
  33. Plant Dis. 2021 Oct;105(10):2749-2770 [PMID: 34253045]
  34. Appl Environ Microbiol. 2017 May 1;83(10): [PMID: 28314726]
  35. Environ Microbiol. 2015 Feb;17(2):316-31 [PMID: 24571749]
  36. PLoS One. 2016 Dec 1;11(12):e0167014 [PMID: 27907023]
  37. Sci Rep. 2021 Apr 1;11(1):7426 [PMID: 33795816]
  38. Z Allg Mikrobiol. 1981;21(8):607-10 [PMID: 7331378]
  39. Bacteriol Rev. 1977 Mar;41(1):181-204 [PMID: 324466]
  40. Microorganisms. 2018 Feb 11;6(1): [PMID: 29439478]
  41. Nucleic Acids Res. 2021 Jul 2;49(W1):W293-W296 [PMID: 33885785]
  42. Environ Microbiol. 2020 Aug;22(8):3143-3157 [PMID: 32372527]
  43. Microbiome. 2021 Mar 24;9(1):69 [PMID: 33762001]
  44. Nature. 2012 Aug 2;488(7409):91-5 [PMID: 22859207]
  45. Microbiome. 2022 May 12;10(1):76 [PMID: 35546409]
  46. Mol Plant Microbe Interact. 2012 Jan;25(1):28-36 [PMID: 21970692]
  47. PLoS Biol. 2016 Jan 20;14(1):e1002352 [PMID: 26788878]
  48. Curr Microbiol. 2019 Dec;76(12):1512-1519 [PMID: 31511964]
  49. Environ Microbiol. 2002 Nov;4(11):654-66 [PMID: 12460273]
  50. PLoS One. 2023 Apr 6;18(4):e0279049 [PMID: 37023002]
  51. J Adv Res. 2019 Mar 20;19:29-37 [PMID: 31341667]
  52. Phytopathology. 2014 May;104(5):520-31 [PMID: 24199713]
  53. BMC Genomics. 2016 Aug 02;17:534 [PMID: 27485828]
  54. Sci Rep. 2016 Jul 12;6:29543 [PMID: 27404280]
  55. Front Microbiol. 2015 Oct 14;6:1118 [PMID: 26528266]
  56. Nature. 2015 Dec 17;528(7582):340-1 [PMID: 26633626]
  57. Plant Biol (Stuttg). 2016 Jul;18(4):627-37 [PMID: 26849835]
  58. Molecules. 2019 Apr 10;24(7): [PMID: 30974826]
  59. Environ Microbiol Rep. 2016 Jun;8(3):388-98 [PMID: 27038229]
  60. Microbiome. 2017 Feb 23;5(1):25 [PMID: 28231859]
  61. Nucleic Acids Res. 2014 Jan;42(Database issue):D633-42 [PMID: 24288368]
  62. Curr Opin Microbiol. 2018 Jun;43:162-168 [PMID: 29454931]
  63. Nat Biotechnol. 2019 Jun;37(6):676-684 [PMID: 31036930]
  64. Int J Syst Evol Microbiol. 2016 Aug;66(8):2780-2783 [PMID: 27045188]
  65. FEMS Microbiol Ecol. 2012 Jun;80(3):696-708 [PMID: 22375835]
  66. FEMS Microbiol Rev. 2000 Dec;24(5):625-45 [PMID: 11077155]
  67. Mol Biol Evol. 2021 Jun 25;38(7):3022-3027 [PMID: 33892491]
  68. Annu Rev Plant Biol. 2013;64:807-38 [PMID: 23373698]
  69. Sci Rep. 2021 Jun 10;11(1):12259 [PMID: 34112830]
  70. J Microbiol. 2016 Dec;54(12):823-831 [PMID: 27888459]
  71. Appl Environ Microbiol. 2022 Dec 20;88(24):e0140922 [PMID: 36468881]
  72. Front Microbiol. 2022 Nov 03;13:945315 [PMID: 36406437]
  73. Genome Announc. 2013 Apr 04;1(2):e0022512 [PMID: 23558537]
  74. Microbiol Res. 2014 Jan 20;169(1):83-98 [PMID: 23871145]
  75. Trends Plant Sci. 2019 Mar;24(3):194-198 [PMID: 30670324]
  76. Phytopathology. 2021 Aug;111(8):1428-1437 [PMID: 33386066]
  77. Front Plant Sci. 2020 Aug 27;11:1179 [PMID: 32983187]
  78. Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):E911-20 [PMID: 25605935]
  79. PLoS Pathog. 2019 Jun 13;15(6):e1007740 [PMID: 31194849]
  80. Microbiome. 2017 Jan 17;5(1):2 [PMID: 28095877]
  81. Nature. 2001 Jun 21;411(6840):948-50 [PMID: 11418858]
  82. J Integr Plant Biol. 2022 Feb;64(2):230-243 [PMID: 35029016]
  83. Nature. 2012 Aug 2;488(7409):86-90 [PMID: 22859206]
  84. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  85. Can J Microbiol. 2001 Oct;47(10):916-24 [PMID: 11718545]
  86. Microbiol Mol Biol Rev. 2015 Sep;79(3):293-320 [PMID: 26136581]
  87. Int J Syst Evol Microbiol. 2015 Mar;65(Pt 3):943-951 [PMID: 25563913]
  88. Nat Genet. 2018 Jan;50(1):138-150 [PMID: 29255260]

MeSH Term

Oryza
Burkina Faso
RNA, Ribosomal, 16S
Bacteria
Proteobacteria
Seedlings
Plant Roots

Chemicals

RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0riceisolatesbacteriamicrobiomegrowthrootplantstudyroot-associateddiversityobtainedfiverecentlysequencingcollectioncultureselectedshowedvitropromotingcapacityproductionPseudomonascultivarsabilitybestABIPPlant-associatedessentialpartnershealthdevelopmentadditiontakingadvantagerapidadvancesachievedhigh-throughputapproachesstudiesplant-microbiomeinteractionsrequireexperimentsculturableinitiatedBurkinaFasofollowaimpresentdevelopcorrespondingcoveringmaximumassessbasedmediumuseddescribetaxonomyphenotypeabundance3000usingmediaTSANGNNFbPCATBaz16SrRNAfragment1013workingcoveredfourbacterialphylaProteobacteriaFirmicutesActinobacteriaBacteroidetesrepresented33%previouslydescribedorderlevelPhenotypicanalysisrevealedoverallammoniumauxinbiosynthesissiderophorephosphatesolubilisationenrichedBurkholderiaRalstoniaAcinetobacterspecies45representativescreenedpromotionseedlingstwoimproveotherseffectiveonecultivarresultstaiwanensis2315Azorhizobiumcaulinodans1219increasedseedling158%47%respectivelyAmong14performingeightappearedabundantdatasetpreviousfindingsresearchcontributeplantaPGPcapacitiesdescriptionpotentialimportanceplantsprovidingfirsttimeinsightprevalenceDiversityBurkina-Fasocross-comparisonmetabarcodingdata

Similar Articles

Cited By