SIGANEO: Similarity network with GAN enhancement for immunogenic neoepitope prediction.

Yilin Ye, Yiming Shen, Jian Wang, Dong Li, Yu Zhu, Zhao Zhao, Youdong Pan, Yi Wang, Xing Liu, Ji Wan
Author Information
  1. Yilin Ye: Shenzhen Neocura Biotechnology Co. Ltd., Shenzhen 518055, China.
  2. Yiming Shen: Shenzhen Neocura Biotechnology Co. Ltd., Shenzhen 518055, China.
  3. Jian Wang: Shenzhen Neocura Biotechnology Co. Ltd., Shenzhen 518055, China.
  4. Dong Li: Shenzhen Neocura Biotechnology Co. Ltd., Shenzhen 518055, China.
  5. Yu Zhu: Shenzhen Neocura Biotechnology Co. Ltd., Shenzhen 518055, China.
  6. Zhao Zhao: Shenzhen Neocura Biotechnology Co. Ltd., Shenzhen 518055, China.
  7. Youdong Pan: Shenzhen Neocura Biotechnology Co. Ltd., Shenzhen 518055, China.
  8. Yi Wang: Shenzhen Neocura Biotechnology Co. Ltd., Shenzhen 518055, China.
  9. Xing Liu: The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
  10. Ji Wan: Shenzhen Neocura Biotechnology Co. Ltd., Shenzhen 518055, China.

Abstract

Target selection of the personalized cancer neoantigen vaccine, which is highly dependent on computational prediction algorithms, is crucial for its clinical efficacy. Due to the limited number of experimentally validated immunogenic neoepitopes as well as the complexity of neoantigens in eliciting T cell response, the accuracy of neoepitope immunogenicity prediction methods requires persistent efforts for improvement. We present a deep learning framework for neoepitope immunogenicity prediction - SIGANEO by integrating GAN-like network with similarity network to address issues of missing values and limited data concerning neoantigen prediction. This framework exhibits superior performance over competing machine-learning-based neoantigen prediction algorithms over an independent test dataset from TESLA consortium. Particularly for the clinical setting of neoantigen vaccine where only the top 10 and 20 predictions are selected for vaccine production, SIGANEO achieves significantly better accuracy for predicting experimentally validated neoepitopes. Our work demonstrates that deep learning techniques can greatly boost the accuracy of target identification for cancer neoantigen vaccine.

Keywords

References

  1. Science. 2015 Dec 11;350(6266):1387-90 [PMID: 26516200]
  2. Cell. 2020 Oct 29;183(3):818-834.e13 [PMID: 33038342]
  3. PLoS One. 2019 Feb 13;14(2):e0209523 [PMID: 30759172]
  4. Cancer Res. 2022 Jan 1;82(1):142-154 [PMID: 34711610]
  5. Front Microbiol. 2022 Feb 07;13:829694 [PMID: 35197957]
  6. J Chem Inf Model. 2021 May 24;61(5):2198-2207 [PMID: 33787250]
  7. Nature. 2023 Jun;618(7963):144-150 [PMID: 37165196]
  8. Brief Bioinform. 2021 Nov 5;22(6): [PMID: 34009266]
  9. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915-9 [PMID: 1438297]
  10. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  11. Nat Med. 2016 Apr;22(4):433-8 [PMID: 26901407]
  12. Science. 2015 May 15;348(6236):803-8 [PMID: 25837513]
  13. Nat Rev Cancer. 2017 Apr;17(4):209-222 [PMID: 28233802]
  14. Genome Med. 2020 May 27;12(1):47 [PMID: 32460812]
  15. Oncoimmunology. 2019 Nov 3;9(1):1684713 [PMID: 32002298]
  16. Bioinformatics. 2020 Dec 30;36(Suppl_2):i573-i582 [PMID: 33381842]
  17. Nat Rev Clin Oncol. 2021 Apr;18(4):215-229 [PMID: 33473220]
  18. Nat Commun. 2019 Jan 25;10(1):449 [PMID: 30683863]
  19. Cell Rep. 2019 Sep 3;28(10):2728-2738.e7 [PMID: 31484081]
  20. Nat Commun. 2018 Dec 18;9(1):5361 [PMID: 30560866]
  21. J Clin Invest. 2015 Oct 1;125(10):3981-91 [PMID: 26389673]
  22. Nature. 2017 Jul 13;547(7662):217-221 [PMID: 28678778]
  23. Genome Biol. 2016 Jun 06;17(1):122 [PMID: 27268795]
  24. J Exp Clin Cancer Res. 2021 Jun 21;40(1):198 [PMID: 34154611]
  25. Bioinformatics. 2019 Nov 1;35(21):4394-4396 [PMID: 30942877]
  26. J Clin Invest. 2019 Mar 5;129(5):2056-2070 [PMID: 30835255]
  27. Nature. 2017 Jul 13;547(7662):222-226 [PMID: 28678784]
  28. Bioinformatics. 2018 Sep 1;34(17):i884-i890 [PMID: 30423086]
  29. Nat Cancer. 2021 May;2(5):563-574 [PMID: 34927080]
  30. Nucleic Acids Res. 2020 Jul 2;48(W1):W449-W454 [PMID: 32406916]
  31. J Immunol. 2016 Aug 15;197(4):1517-24 [PMID: 27402703]
  32. Comput Electr Eng. 2021 Mar;90:106960 [PMID: 33518824]
  33. Cell Rep Med. 2021 Sep 03;2(9):100392 [PMID: 34622229]
  34. Cold Spring Harb Mol Case Stud. 2020 Apr 1;6(2): [PMID: 31907277]
  35. Nat Genet. 2011 May;43(5):491-8 [PMID: 21478889]
  36. Genome Med. 2019 Dec 30;11(1):87 [PMID: 31888734]
  37. Biochim Biophys Acta Gen Subj. 2022 Mar;1866(3):130070 [PMID: 34953809]
  38. Nat Rev Drug Discov. 2022 Apr;21(4):261-282 [PMID: 35105974]
  39. Nat Med. 2018 Jun;24(6):724-730 [PMID: 29867227]
  40. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  41. Cell Rep Med. 2021 Feb 06;2(2):100194 [PMID: 33665637]
  42. Nature. 2017 Nov 23;551(7681):517-520 [PMID: 29132144]
  43. Nat Biotechnol. 2017 Feb 8;35(2):97 [PMID: 28178261]
  44. Nucleic Acids Res. 2019 Jan 8;47(D1):D339-D343 [PMID: 30357391]
  45. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  46. Clin Cancer Res. 2020 Jan 15;26(2):450-464 [PMID: 31857430]
  47. Cell Syst. 2018 Jul 25;7(1):129-132.e4 [PMID: 29960884]
  48. BMC Bioinformatics. 2021 Jan 6;22(1):7 [PMID: 33407098]
  49. Biotechnol Appl Biochem. 2022 Apr;69(2):514-525 [PMID: 33624357]

Word Cloud

Created with Highcharts 10.0.0predictionneoantigenvaccineaccuracyneoepitopelearningnetworkcanceralgorithmsclinicallimitedexperimentallyvalidatedimmunogenicneoepitopesimmunogenicitydeepframeworkSIGANEOTargetselectionpersonalizedhighlydependentcomputationalcrucialefficacyDuenumberwellcomplexityneoantigenselicitingTcellresponsemethodsrequirespersistenteffortsimprovementpresent-integratingGAN-likesimilarityaddressissuesmissingvaluesdataconcerningexhibitssuperiorperformancecompetingmachine-learning-basedindependenttestdatasetTESLAconsortiumParticularlysettingtop1020predictionsselectedproductionachievessignificantlybetterpredictingworkdemonstratestechniquescangreatlyboosttargetidentificationSIGANEO:SimilarityGANenhancementCancerimmunotherapyDeepImmunogenicityNeoantigenNeoepitope

Similar Articles

Cited By