Holding in the stream: convergent evolution of suckermouth structures in Loricariidae (Siluriformes).

Wencke Krings, Daniel Konn-Vetterlein, Bernhard Hausdorf, Stanislav N Gorb
Author Information
  1. Wencke Krings: Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany. wencke.krings@uni-hamburg.de. ORCID
  2. Daniel Konn-Vetterlein: Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
  3. Bernhard Hausdorf: Department of Malacology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
  4. Stanislav N Gorb: Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany.

Abstract

Suckermouth armoured catfish (Loricariidae) are a highly speciose and diverse freshwater fish family, which bear upper and lower lips forming an oral disc. Its hierarchical organisation allows the attachment to various natural surfaces. The discs can possess papillae of different shapes, which are supplemented, in many taxa, by small horny projections, i.e. unculi. Although these attachment structures and their working mechanisms, which include adhesion and interlocking, are rather well investigated in some selected species, the loricariid oral disc is unfortunately understudied in the majority of species, especially with regard to comparative aspects of the diverse oral structures and their relationship to the ecology of different species. In the present paper, we investigated the papilla and unculi morphologies in 67 loricariid species, which inhabit different currents and substrates. We determined four papilla types and eight unculi types differing by forms and sizes. Ancestral state reconstructions strongly suggest convergent evolution of traits. There is no obvious correlation between habitat shifts and the evolution of specific character states. From handling the structures and from drying artefacts we could infer some information about their material properties. This, together with their shape, enabled us to carefully propose hypotheses about mechanisms of interactions of oral disc structures with natural substrates typical for respective fish species.

Keywords

References

  1. Bioinspir Biomim. 2019 Oct 25;14(6):066016 [PMID: 31553967]
  2. Sci Adv. 2022 Mar 25;8(12):eabm9341 [PMID: 35319998]
  3. J Morphol. 2010 Jan;271(1):25-35 [PMID: 19623624]
  4. J Morphol. 2007 Sep;268(9):805-14 [PMID: 17626257]
  5. PLoS One. 2021 Mar 15;16(3):e0247747 [PMID: 33720930]
  6. J Exp Biol. 2012 Nov 15;215(Pt 22):3925-36 [PMID: 23100486]
  7. J Morphol. 2012 Jan;273(1):24-39 [PMID: 21960029]
  8. Mol Phylogenet Evol. 2019 Jun;135:148-165 [PMID: 30802595]
  9. J R Soc Interface. 2014 Sep 6;11(98):20140499 [PMID: 24990289]
  10. J Exp Biol. 2022 May 1;225(9): [PMID: 35467004]
  11. Sci Robot. 2017 Sep 20;2(10): [PMID: 33157888]
  12. J Exp Biol. 2014 Jul 15;217(Pt 14):2548-54 [PMID: 25031458]
  13. Bioinspir Biomim. 2016 May 11;11(3):035003 [PMID: 27165465]
  14. J R Soc Interface. 2014 Aug 6;11(97):20140273 [PMID: 24920108]
  15. J Anat. 2014 Aug;225(2):197-208 [PMID: 24842829]
  16. Biomimetics (Basel). 2023 Feb 16;8(1): [PMID: 36810416]
  17. Bioinspir Biomim. 2020 Aug 21;15(5):056018 [PMID: 32820724]
  18. Biol Lett. 2013 May 01;9(3):20130234 [PMID: 23637393]
  19. J Mech Behav Biomed Mater. 2017 Sep;73:76-85 [PMID: 28153482]
  20. J Morphol. 1980 May;164(2):139-159 [PMID: 30170476]
  21. Microsc Microanal. 2018 Jun;24(3):310-317 [PMID: 29952284]
  22. J Exp Biol. 2021 Jan 21;224(Pt 2): [PMID: 33328291]
  23. Sci Rep. 2016 Nov 16;6:37221 [PMID: 27849018]
  24. ACS Appl Mater Interfaces. 2020 Oct 7;12(40):45460-45475 [PMID: 32910638]
  25. R Soc Open Sci. 2022 Nov 23;9(11):220713 [PMID: 36425524]
  26. J Morphol. 2012 Oct;273(10):1127-49 [PMID: 22811076]
  27. Integr Comp Biol. 2002 Dec;42(6):1146-53 [PMID: 21680399]
  28. Mol Phylogenet Evol. 2016 Jan;94(Pt B):492-517 [PMID: 26516029]
  29. PLoS One. 2013 Sep 25;8(9):e73810 [PMID: 24086297]
  30. J Morphol. 2020 Jun;281(6):676-687 [PMID: 32369248]
  31. Bioinspir Biomim. 2007 Dec;2(4):S117-25 [PMID: 18037721]
  32. Beilstein J Nanotechnol. 2014 Dec 17;5:2424-39 [PMID: 25671138]
  33. Philos Trans R Soc Lond B Biol Sci. 2019 Oct 28;374(1784):20190204 [PMID: 31495305]
  34. J Exp Biol. 2023 Apr 25;226(Suppl_1): [PMID: 37021688]
  35. J R Soc Interface. 2005 Mar 22;2(2):55-61 [PMID: 16849164]
  36. Nature. 2000 Jun 8;405(6787):681-5 [PMID: 10864324]
  37. Langmuir. 2022 Jan 25;38(3):1215-1222 [PMID: 35026116]
  38. BMC Evol Biol. 2012 Jul 26;12:124 [PMID: 22835218]
  39. J Anat. 2020 Oct;237(4):643-654 [PMID: 32484929]
  40. J Morphol. 2013 Jul;274(7):733-42 [PMID: 23450656]
  41. Integr Org Biol. 2019 Nov 21;1(1):obz029 [PMID: 33791543]
  42. J Morphol. 2013 Oct;274(10):1164-79 [PMID: 23907790]
  43. J Exp Zool A Ecol Genet Physiol. 2011 Mar 1;315(3):121-31 [PMID: 21370480]
  44. Philos Trans A Math Phys Eng Sci. 2008 May 13;366(1870):1557-74 [PMID: 18192171]
  45. Integr Comp Biol. 2022 Oct 29;62(4):934-944 [PMID: 35767861]
  46. J Exp Biol. 2022 Nov 15;225(22): [PMID: 36342423]
  47. J Exp Biol. 2015 Nov;218(Pt 22):3551-8 [PMID: 26417010]
  48. Mol Phylogenet Evol. 2017 Apr;109:321-336 [PMID: 28065866]
  49. Zoology (Jena). 2016 Dec;119(6):511-517 [PMID: 27421678]
  50. Physiol Biochem Zool. 2009 Jan-Feb;82(1):51-62 [PMID: 19072236]
  51. Sci Rep. 2019 Nov 12;9(1):16571 [PMID: 31719624]
  52. J Morphol. 2014 Sep;275(9):1066-79 [PMID: 24796692]
  53. PLoS One. 2013 Dec 27;8(12):e84851 [PMID: 24386424]
  54. Biomimetics (Basel). 2022 Nov 18;7(4): [PMID: 36412730]
  55. J R Soc Interface. 2006 Oct 22;3(10):689-97 [PMID: 16971337]
  56. Sci Rep. 2016 May 20;6:26219 [PMID: 27198650]
  57. J Exp Biol. 2011 Apr 1;214(Pt 7):1181-93 [PMID: 21389204]
  58. Beilstein J Nanotechnol. 2021 Jul 15;12:725-743 [PMID: 34354900]
  59. Soft Matter. 2018 Aug 29;14(34):7026-7033 [PMID: 30109340]
  60. Adv Mater. 2018 Aug;30(32):e1801884 [PMID: 29939425]

Grants

  1. 470833544/Deutsche Forschungsgemeinschat (DFG)

Word Cloud

Created with Highcharts 10.0.0structuresspeciesoraldiscdifferentunculievolutionLoricariidaediversefishattachmentnaturalmechanismsinvestigatedloricariidpapillasubstratestypesconvergentSuckermoutharmouredcatfishhighlyspeciosefreshwaterfamilybearupperlowerlipsforminghierarchicalorganisationallowsvarioussurfacesdiscscanpossesspapillaeshapessupplementedmanytaxasmallhornyprojectionsieAlthoughworkingincludeadhesioninterlockingratherwellselectedunfortunatelyunderstudiedmajorityespeciallyregardcomparativeaspectsrelationshipecologypresentpapermorphologies67inhabitcurrentsdeterminedfoureightdifferingformssizesAncestralstatereconstructionsstronglysuggesttraitsobviouscorrelationhabitatshiftsspecificcharacterstateshandlingdryingartefactsinferinformationmaterialpropertiestogethershapeenableduscarefullyproposehypothesesinteractionstypicalrespectiveHoldingstream:suckermouthSiluriformesAdhesionAttachmentFishFrictionInterlockingOralSuctionUnculi

Similar Articles

Cited By