Understanding Motivations for Dating App Use Among Gay and Bisexual Men: Validation, Latent Profile Analysis, and Differences in Health Outcomes.

Along He, He Bu, Wenlong Mu, Donghan Fu, Chen Chen
Author Information
  1. Along He: School of Journalism and Communication, Nanjing University, Nanjing, People's Republic of China.
  2. He Bu: School of Social and Public Administration, East China University of Science and Technology, Shanghai, People's Republic of China.
  3. Wenlong Mu: School of Journalism and Communication, Wuhan University, Bayi Road, Wuchang District, Wuhan, 430072, Hubei, People's Republic of China. mu.w@whu.edu.cn.
  4. Donghan Fu: School of Journalism and Communication, Beijing Normal University, Beijing, People's Republic of China.
  5. Chen Chen: Department of Social and Behavioural Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China.

Abstract

While there has been a proliferation in gay dating app (GDA) use in China, research into their potential effects on health outcomes, particularly mental health outcomes, among gay and bisexual men is lacking. The motivations for GDA use are diverse, and understanding users' motivation profiles may provide a necessary starting point for exploring the heterogeneous effects of GDA use on health outcomes. A cross-sectional survey of the motivations for GDA use and other health outcome variables (i.e., condom use frequency, self-stigma, and subjective emptiness) was conducted among 366 Chinese gay and bisexual men. The results of exploration structure equation modeling indicate that the GDA Use Motivation Scale, with a four-factor first-order model, had strong psychometric properties. Then, latent profile analysis (LPA) based on the mean scores of four aspects of motivation was performed. The results of the LPA revealed the existence of four profiles: "Weak motivations" (30.9%), "Differentiated motivations" (17.8%), "Moderate motivations" (30.3%), and "Strong motivations" (21.0%). Differences in health outcomes among the motivation profiles were found by using the Bolck-Croon-Hagenaars approach. Overall, most participants (60.1%) tended to use condoms consistently, regardless of how strong their GDA use motivation was; however, stronger GDA use motivations were associated with higher levels of self-stigma and subjective emptiness. We call for more research to focus on the real needs behind and motivations for GDA use so that all such app users' voices can be heard, as well as to raise awareness about the potential health risks associated with GDA use among Chinese gay and bisexual men.

Keywords

References

  1. Anzani, A., Di Sarno, M., & Prunas, A. (2018). Using smartphone apps to find sexual partners: A review of the literature. Sexologies, 27(3), e61–e65. https://doi.org/10.1016/j.sexol.2018.05.001 [DOI: 10.1016/j.sexol.2018.05.001]
  2. Bakk, Z., & Vermunt, J. K. (2016). Robustness of stepwise latent class modeling with continuous distal outcomes. Structural Equation Modeling—A Multidisciplinary Journal, 23(1), 20–31. https://doi.org/10.1080/10705511.2014.955104 [DOI: 10.1080/10705511.2014.955104]
  3. Barrada, J. R., & Castro, A. (2020). Tinder users: Sociodemographic, psychological, and psychosexual characteristics. International Journal of Environmental Research and Public Health, 17(21), 8047. https://doi.org/10.3390/ijerph17218047 [DOI: 10.3390/ijerph17218047]
  4. Beaton, D. E., Bombardier, C., Guillemin, F., & Ferraz, M. B. (2000). Guidelines for the process of cross-cultural adaptation of self-report measures. Spine, 25(24), 3186–3191. https://doi.org/10.1097/00007632-200012150-00014 [DOI: 10.1097/00007632-200012150-00014]
  5. Busch, P. A., & McCarthy, S. (2021). Antecedents and consequences of problematic smartphone use: A systematic literature review of an emerging research area. Computers in Human Behavior, 114, 106414. https://doi.org/10.1016/j.chb.2020.106414 [DOI: 10.1016/j.chb.2020.106414]
  6. Cao, B. L., & Smith, K. (2023). Gay dating apps in China: Do they alleviate or exacerbate loneliness? The serial mediation effect of perceived and internalized sexuality stigma. Journal of Homosexuality, 70(2), 347–363. https://doi.org/10.1080/00918369.2021.1984751 [DOI: 10.1080/00918369.2021.1984751]
  7. Castro, Á., & Barrada, J. R. (2020). Dating apps and their sociodemographic and psychosocial correlates: A systematic review. International Journal of Environmental Research and Public Health, 17(18), 6500. https://doi.org/10.3390/ijerph17186500 [DOI: 10.3390/ijerph17186500]
  8. Chan, R. C. H. (2023). Benefits and risks of LGBT social media use for sexual and gender minority individuals: An investigation of psychosocial mechanisms of LGBT social media use and well-being. Computers in Human Behavior, 139, 107531. https://doi.org/10.1016/j.chb.2022.107531 [DOI: 10.1016/j.chb.2022.107531]
  9. Chen, A. (2019). From attachment to addiction: The mediating role of need satisfaction on social networking sites. Computers in Human Behavior, 98, 80–92. https://doi.org/10.1016/j.chb.2019.03.034 [DOI: 10.1016/j.chb.2019.03.034]
  10. Chen, L., Chen, W. J., Jiang, T. T., Ni, Z. K., Ma, Q. Q., & Pan, X. H. (2021). The characteristics and risk factors of web-based sexual behaviors among men who have sex with men in eastern China: Cross-sectional study. JMIR Public Health and Surveillance, 7(9), e25360. https://doi.org/10.2196/25360 [DOI: 10.2196/25360]
  11. Cristescu, I., & Balog, A. (2018). Exploring motives for using Facebook: A latent profile analysis. Studies in Informatics and Control, 27(3), 331–338. https://doi.org/10.24846/v27i3y201808 [DOI: 10.24846/v27i3y201808]
  12. Cuadrado, E., Tabernero, C., Castillo-Mayen, R., Luque, B., & Moreno-Bella, E. (2022). Motives for using social networks and social network addiction in a time of pandemic. Cyberpsychology-Journal of Psychosocial Research on Cyberspace, 16(5), 3. https://doi.org/10.5817/cp2022-5-3 [DOI: 10.5817/cp2022-5-3]
  13. Dhoest, A., & Van Ouytsel, J. (2022). Queer media generations: Shifting identifications and media uses among non-heterosexual men. European Journal of Communication, 37(6), 663–678. https://doi.org/10.1177/02673231221101741 [DOI: 10.1177/02673231221101741]
  14. Duncan, D. T., Park, S. H., Hambrick, H. R., Dangerfield, D. T., Goedel, W. C., Brewer, R., Mgbako, O., Lindsey, J., Regan, S. D., & Hickson, D. A. (2018). Characterizing geosocial-networking app use among young black men who have sex with men: A multi-city cross-sectional survey in the southern United States. JMIR Mhealth and Uhealth, 6(6), e10316. https://doi.org/10.2196/10316 [DOI: 10.2196/10316]
  15. Escobar-Viera, C. G., Melcher, E. M., Miller, R. S., Whitfield, D. L., Jacobson-Lopez, D., Gordon, J. D., Ballard, A. J., Rollman, B. L., & Pagoto, S. (2021). A systematic review of the engagement with social media-delivered interventions for improving health outcomes among sexual and gender minorities. Internet Interventions-the Application of Information Technology in Mental and Behavioural Health, 25, 100428. https://doi.org/10.1016/j.invent.2021.100428 [DOI: 10.1016/j.invent.2021.100428]
  16. Fan, S., Li, P. Y., Hu, Y. Q., Gong, H., Yu, M. H., Ding, Y., Luo, Z., Wu, G., Ouyang, L., & Zou, H. C. (2022). Geosocial networking smartphone app use and high-risk sexual behaviors among men who have sex with men attending university in China: Cross-sectional study. Jmir Public Health and Surveillance, 8(3), e31033. https://doi.org/10.2196/31033 [DOI: 10.2196/31033]
  17. Gu, L., Gao, X., & Li, Y. (2022). What drives me to use TikTok: A latent profile analysis of users’ motives. Frontiers in Psychology, 13, 992824. https://doi.org/10.3389/fpsyg.2022.992824 [DOI: 10.3389/fpsyg.2022.992824]
  18. Han, X., Han, W. T., Qu, J. B., Li, B., & Zhu, Q. H. (2019). What happens online stays online?—Social media dependency, online support behavior and offline effects for LGBT. Computers in Human Behavior, 93, 91–98. https://doi.org/10.1016/j.chb.2018.12.011 [DOI: 10.1016/j.chb.2018.12.011]
  19. He, A., Bu, H., Chen, C., & Xu, G. (2023a). Self-criticism and subjective emptiness among gay and bisexual men: A latent profile analysis. Sexuality Research and Social Policy. https://doi.org/10.1007/s13178-023-00885-1 [DOI: 10.1007/s13178-023-00885-1]
  20. He, A., Bu, H., Liao, A., & Mu, W. (2023b). What triggers depressive symptoms among gay and bisexual men? A sequential mediation model of sexual minority-related stigma and self-criticism. British Journal of Social Psychology, 62(2), 1097–1113. https://doi.org/10.1111/bjso.12621 [DOI: 10.1111/bjso.12621]
  21. Hermosa-Bosano, C., Hidalgo-Andrade, P., & Paz, C. (2021). Geosocial networking apps use among sexual minority men in Ecuador: An exploratory study. Archives of Sexual Behavior, 50(7), 2995–3009. https://doi.org/10.1007/s10508-021-01921-0 [DOI: 10.1007/s10508-021-01921-0]
  22. Hong, C. L., Feinstein, B. A., Holloway, I. W., Yu, F., Huang, W. T., Sullivan, P. S., Siegler, A. J., & Mi, G. D. (2022). Differences in sexual behaviors, HIV testing, and willingness to use PrEP between gay and bisexual men who have sex with men in China. International Journal of Sexual Health, 34(3), 424–431. https://doi.org/10.1080/19317611.2022.2053922 [DOI: 10.1080/19317611.2022.2053922]
  23. Hong, H., Xu, J., McGoogan, J., Dong, H. J., Xu, G. Z., & Wu, Z. Y. (2018). Relationship between the use of gay mobile phone applications and HIV infection among men who have sex with men in Ningbo, China: A cross-sectional study. International Journal of STD & AIDS, 29(5), 491–497. https://doi.org/10.1177/0956462417738468 [DOI: 10.1177/0956462417738468]
  24. Hu, L., Luo, Y. T., Zhong, X. N., Lu, R. R., Wang, Y., Sharma, M., & Ye, M. L. (2020). Condom use and related factors among rural and urban men who have sex with men in western China: Based on information-motivation-behavioral skills model. American Journal of Men’s Health, 14. https://doi.org/10.1177/1557988319899799
  25. Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118 [DOI: 10.1080/10705519909540118]
  26. Jayawardena, M., Pepping, C. A., Lyons, A., & Hill, A. O. (2022). Geosocial networking application use in men who have sex with men: The role of adult attachment. Sexuality Research and Social Policy, 19(1), 85–90. https://doi.org/10.1007/s13178-020-00526-x [DOI: 10.1007/s13178-020-00526-x]
  27. Katz, E., Blumler, J. G., & Gurevitch, M. (1973). Uses and gratifications research. The Public Opinion Quarterly, 37(4), 509–523. [DOI: 10.1086/268109]
  28. Knox, J., Chen, Y. N., He, Q. Y., Liu, G. W., Jones, J., Wang, X. D., Sullivan, P., & Siegler, A. (2021). Use of geosocial networking apps and HIV risk behavior among men who have sex with men: Case-crossover study. JMIR Public Health and Surveillance, 7(1), 68–77. https://doi.org/10.2196/17173 [DOI: 10.2196/17173]
  29. Lanza, S. T., & Rhoades, B. L. (2013). Latent class analysis: An alternative perspective on subgroup analysis in prevention and treatment. Prevention Science, 14(2), 157–168. https://doi.org/10.1007/s11121-011-0201-1 [DOI: 10.1007/s11121-011-0201-1]
  30. Liu, H., Feng, T., Rhodes, A. G., & Liu, H. (2009). Assessment of the Chinese version of HIV and homosexuality related stigma scales. Sexually Transmitted Infections, 85(1). https://doi.org/10.1136/sti.2008.032714
  31. Lo, Y., Mendell, N. R., & Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika, 88(3), 767–778. https://doi.org/10.1093/biomet/88.3.767 [DOI: 10.1093/biomet/88.3.767]
  32. Lorimer, K., Flowers, P., Davis, M., & Frankis, J. (2016). Young men who have sex with men’s use of social and sexual media and sex-risk associations: Cross-sectional, online survey across four countries. Sexually Transmitted Infections, 92(5), 371–376. https://doi.org/10.1136/sextrans-2015-052209 [DOI: 10.1136/sextrans-2015-052209]
  33. Lubke, G., & Muthén, B. O. (2007). Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters. Structural Equation Modeling: A Multidisciplinary Journal, 14(1), 26–47. https://doi.org/10.1080/10705510709336735 [DOI: 10.1080/10705510709336735]
  34. Luo, Q. Q., Wu, Z. Y., Chen, Z. H., Ma, Y., Mi, G. D., Liu, X. J., Xu, J., Rou, K., & Scott, S. R. (2019). App use frequency and condomless anal intercourse among men who have sex with men in Beijing, China: A cross-sectional study. International Journal of STD & AIDS, 30(12), 1146–1155. https://doi.org/10.1177/0956462419860293 [DOI: 10.1177/0956462419860293]
  35. Macapagal, K., Moran, K., Newcomb, M. E., Moskowitz, D. A., Owens, C., & Mustanski, B. (2021). Patterns of online and offline partnering, partnership characteristics, and condomless sex among adolescent sexual minority males in the USA. Aids and Behavior, 25(7), 2033–2045. https://doi.org/10.1007/s10461-020-03133-4 [DOI: 10.1007/s10461-020-03133-4]
  36. Marino, C., Manari, T., Vieno, A., Imperato, C., Spada, M. M., Franceschini, C., & Musetti, A. (2023). Problematic social networking sites use and online social anxiety: The role of attachment, emotion dysregulation and motives. Addictive Behaviors, 138, 107572. https://doi.org/10.1016/j.addbeh.2022.107572 [DOI: 10.1016/j.addbeh.2022.107572]
  37. Marsh, H. W., Ludtke, O., Trautwein, U., & Morin, A. J. S. (2009). Classical latent profile analysis of academic self-concept dimensions: Synergy of person- and variable-centered approaches to theoretical models of self-concept. Structural Equation Modeling-a Multidisciplinary Journal, 16(2), 191–225. https://doi.org/10.1080/10705510902751010 [DOI: 10.1080/10705510902751010]
  38. Martin, J. A., & Levy, K. N. (2021). Chronic feelings of emptiness in a large undergraduate sample: Starting to fill the void. Personality and Mental Health., 16(3), 190–203. https://doi.org/10.1002/pmh.1531 [DOI: 10.1002/pmh.1531]
  39. Mi, G. D., Zhang, B. B., Yu, F., Ren, X. L., Ong, J. J., Fan, Y. Q., Guo, F. H., Li, C. J., Zhang, M. Z., & Zhang, M. Y. (2021). HIV incidence among men who have sex with men using geosocial networking smartphone application in Beijing, China: An open cohort study. Infectious Diseases of Poverty, 10(1). https://doi.org/10.1186/s40249-021-00814-7
  40. Miao, W. S., & Chan, L. S. (2020). Social constructivist account of the world’s largest gay social app: Case study of Blued in China. Information Society, 36(4), 214–225. https://doi.org/10.1080/01972243.2020.1762271 [DOI: 10.1080/01972243.2020.1762271]
  41. Miao, W. S., & Chan, L. S. (2021). Domesticating gay apps: An intersectional analysis of the use of Blued among Chinese gay men. Journal of Computer-Mediated Communication, 26(1), 38–53. https://doi.org/10.1093/jcmc/zmaa015 [DOI: 10.1093/jcmc/zmaa015]
  42. Miao, W. S., Liu, J. C., & Wu, S. W. (2022). Embedded symbiosis: An institutional approach to government-business relationships in the Chinese internet industry. Information Communication & Society, 25(16), 2447–2464. https://doi.org/10.1080/1369118x.2022.2128600 [DOI: 10.1080/1369118x.2022.2128600]
  43. Montag, C., Becker, B., & Gan, C. M. (2018). The multipurpose application WeChat: A review on recent research. Frontiers in Psychology, 9, 2247. https://doi.org/10.3389/fpsyg.2018.02247 [DOI: 10.3389/fpsyg.2018.02247]
  44. Mu, W. L., & Duan, W. J. (2020). Evaluating the construct validity of Stress Overload Scale-Short using exploratory structural equation modeling. Journal of Health Psychology, 25(7), 913–921. https://doi.org/10.1177/1359105317738322 [DOI: 10.1177/1359105317738322]
  45. Muthén, B., & Muthén, L. K. (2000). Integrating person-centered and variable-centered analyses: Growth mixture modeling with latent trajectory classes. Alcoholism, Clinical and Experimental Research, 24(6), 882–891. https://doi.org/10.1097/00000374-200006000-00020 [DOI: 10.1097/00000374-200006000-00020]
  46. Obarska, K., Szymczak, K., Lewczuk, K., & Gola, M. (2020). Threats to mental health facilitated by dating applications use among men having sex with men. Frontiers in Psychiatry, 11, 584548. https://doi.org/10.3389/fpsyt.2020.584548 [DOI: 10.3389/fpsyt.2020.584548]
  47. Orosz, G., Benyo, M., Berkes, B., Nikoletti, E., Gal, E., Toth-Kiraly, I., & Bothe, B. (2018). The personality, motivational, and need-based background of problematic Tinder use. Journal of Behavioral Addictions, 7(2), 301–316. https://doi.org/10.1556/2006.7.2018.21 [DOI: 10.1556/2006.7.2018.21]
  48. Owens, C., Shrodes, A., Kraus, A., Birnholtz, J., Moskowitz, D. A., & Macapagal, K. (2023). Motivations to start and stop using sexual networking applications among adolescent sexual minority men. Sexuality Research and Social Policy., 20(1), 329–339. https://doi.org/10.1007/s13178-021-00641-3 [DOI: 10.1007/s13178-021-00641-3]
  49. Prah, P., Hickson, F., Bonell, C., McDaid, L. M., Johnson, A. M., Wayal, S., Clifton, S., Sonnenberg, P., Nardone, A., Erens, B., & Mercer, C. H. (2016). Men who have sex with men in Great Britain: Comparing methods and estimates from probability and convenience sample surveys. Sexually Transmitted Infections, 92(6), 455–463. https://doi.org/10.1136/sextrans-2015-052389 [DOI: 10.1136/sextrans-2015-052389]
  50. Price, A. L., Mahler, H. I. M., & Hopwood, C. J. (2022). Construction and validation of a self-report subjective emptiness scale. Assessment, 29(3), 397–409. https://doi.org/10.1177/1073191120968275 [DOI: 10.1177/1073191120968275]
  51. Suen, Y. T., & Chan, R. C. H. (2020). A nationwide cross-sectional study of 15,611 lesbian, gay and bisexual people in China: Disclosure of sexual orientation and experiences of negative treatment in health care. International Journal for Equity in Health, 19(1). https://doi.org/10.1186/s12939-020-1151-7
  52. Sullivan, B. M., & George, A. M. (2023). The Association of motives with problematic smartphone use: A systematic review. Cyberpsychology-Journal of Psychosocial Research on Cyberspace, 17(1). https://doi.org/10.5817/cp2023-1-2
  53. Sumter, S. R., & Vandenbosch, L. (2019). Dating gone mobile: Demographic and personality-based correlates of using smartphone-based dating applications among emerging adults. New Media & Society, 21(3), 655–673. https://doi.org/10.1177/1461444818804773 [DOI: 10.1177/1461444818804773]
  54. Sumter, S. R., Vandenbosch, L., & Ligtenberg, L. (2017). Love me Tinder: Untangling emerging adults’ motivations for using the dating application Tinder. Telematics and Informatics, 34(1), 67–78. https://doi.org/10.1016/j.tele.2016.04.009 [DOI: 10.1016/j.tele.2016.04.009]
  55. Sun, S., Budge, S., Shen, W., Xu, G., Liu, M., & Feng, S. (2020). Minority stress and health: A grounded theory exploration among men who have sex with men in China and implications for health research and interventions. Social Science & Medicine, 252, 112917. https://doi.org/10.1016/j.socscimed.2020.112917 [DOI: 10.1016/j.socscimed.2020.112917]
  56. Sun, S. F., Hoyt, W. T., Tarantino, N., Pachankis, J. E., Whiteley, L., Operario, D., & Brown, L. K. (2021). Cultural context matters: Testing the minority stress model among Chinese sexual minority men. Journal of Counseling Psychology, 68(5), 526–537. https://doi.org/10.1037/cou0000535 [DOI: 10.1037/cou0000535]
  57. Sundar, S. S., & Limperos, A. M. (2013). Uses and grats 2.0: New gratifications for new media. Journal of Broadcasting & Electronic Media, 57(4), 504–525. https://doi.org/10.1080/08838151.2013.845827 [DOI: 10.1080/08838151.2013.845827]
  58. Tarafdar, M., Maier, C., Laumer, S., & Weitzel, T. (2020). Explaining the link between technostress and technology addiction for social networking sites: A study of distraction as a coping behavior. Information Systems Journal, 30(1), 96–124. https://doi.org/10.1111/isj.12253 [DOI: 10.1111/isj.12253]
  59. Valkenburg, P. M. (2022). Social media use and well-being: What we know and what we need to know. Current Opinion in Psychology, 45, 101294. https://doi.org/10.1016/j.copsyc.2021.12.006 [DOI: 10.1016/j.copsyc.2021.12.006]
  60. Van De Wiele, C., & Tong, S. T. (2014, September 13–17). Breaking boundaries: The uses & gratifications of Grindr. [Ubicomp'14: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing]. ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp), Seattle, WA.
  61. Vermunt, J. K. (2010). Latent class modeling with covariates: Two improved three-step approaches. Political Analysis, 18(4), 450–469. https://doi.org/10.1093/pan/mpq025 [DOI: 10.1093/pan/mpq025]
  62. Wang, C., Lee, M. K. O., & Hua, Z. S. (2015). A theory of social media dependence: Evidence from microblog users. Decision Support Systems, 69, 40–49. https://doi.org/10.1016/j.dss.2014.11.002 [DOI: 10.1016/j.dss.2014.11.002]
  63. Wang, S. S. (2020). Calculating dating goals: Data gaming and algorithmic sociality on Blued, a Chinese gay dating app. Information Communication & Society, 23(2), 181–197. https://doi.org/10.1080/1369118x.2018.1490796 [DOI: 10.1080/1369118x.2018.1490796]
  64. Williams, S. L., Mann, A. K., & Fredrick, E. G. (2017). Proximal minority stress, psychosocial resources, and health in sexual minorities. Journal of Social Issues, 73(3), 529–544. https://doi.org/10.1111/josi.12230 [DOI: 10.1111/josi.12230]
  65. Xu, J. J., Yu, H., Tang, W., Leuba, S. I., Zhang, J., Mao, X., Wang, H., Geng, W., Jiang, Y., & Shang, H. (2018). The effect of using geosocial networking apps on the HIV Incidence rate among men who have sex with men: Eighteen-month prospective cohort study in Shenyang. China. Journal of Medical Internet Research, 20(12), e11303. https://doi.org/10.2196/11303 [DOI: 10.2196/11303]
  66. Yang, G. L., Long, J., Luo, D., Xiao, S. Y., & Kaminga, A. C. (2019). The characteristics and quality of mobile phone apps targeted at men who have sex with men in China: A window of opportunity for health information dissemination? JMIR Mhealth and Uhealth, 7(3), e12573. https://doi.org/10.2196/12573 [DOI: 10.2196/12573]
  67. Zervoulis, K., Smith, D. S., Reed, R., & Dinos, S. (2020). Use of ‘gay dating apps’ and its relationship with individual well-being and sense of community in men who have sex with men. Psychology & Sexuality, 11(1–2), 88–102. https://doi.org/10.1080/19419899.2019.1684354 [DOI: 10.1080/19419899.2019.1684354]
  68. Zhang, A. D., Reynolds, N. R., Huang, C. M., Tan, S. M., Yang, G. L., & Yan, J. (2022). The process of contemporary gay identity development in China: The influence of internet use. Frontiers in Public Health, 10, 954674. https://doi.org/10.3389/fpubh.2022.954674 [DOI: 10.3389/fpubh.2022.954674]
  69. Zhao, N., & Zhou, G. Y. (2020). Social media use and mental health during the COVID-19 pandemic: Moderator role of disaster stressor and mediator role of negative affect. Applied Psychology-Health and Well Being, 12(4), 1019–1038. https://doi.org/10.1111/aphw.12226 [DOI: 10.1111/aphw.12226]
  70. Zou, H. C., & Fan, S. (2017). Characteristics of men who have sex with men who use smartphone geosocial networking applications and implications for HIV interventions: A systematic review and meta-analysis. Archives of Sexual Behavior, 46(4), 885–894. https://doi.org/10.1007/s10508-016-0709-3 [DOI: 10.1007/s10508-016-0709-3]

MeSH Term

Male
Humans
Motivation
Cross-Sectional Studies
Mobile Applications
Bisexuality
Sexual and Gender Minorities
Outcome Assessment, Health Care
Homosexuality, Male

Word Cloud

Created with Highcharts 10.0.0useGDAhealthoutcomesgayamongbisexualmenmotivationsmotivationmotivations"Gaydatingappresearchpotentialeffectsusers'profilesself-stigmasubjectiveemptinessChineseresultsUsestrongLPAfour30DifferencesassociatedLatentProfileAnalysisHealthproliferationChinaparticularlymentallackingdiverseunderstandingmayprovidenecessarystartingpointexploringheterogeneouscross-sectionalsurveyoutcomevariablesiecondomfrequencyconducted366explorationstructureequationmodelingindicateMotivationScalefour-factorfirst-ordermodelpsychometricpropertieslatentprofileanalysisbasedmeanscoresaspectsperformedrevealedexistenceprofiles:"Weak9%"Differentiated178%"Moderate3%"Strong210%foundusingBolck-Croon-HagenaarsapproachOverallparticipants601%tendedcondomsconsistentlyregardlesshoweverstrongerhigherlevelscallfocusrealneedsbehindvoicescanheardwellraiseawarenessrisksUnderstandingMotivationsDatingAppAmongBisexualMen:ValidationOutcomesappsSexualorientation

Similar Articles

Cited By