Dynamic encounters with red blood cells trigger splenic marginal zone B cell retention and function.
Dan Liu, Benjamin Y Winer, Marissa Y Chou, Hanson Tam, Ying Xu, Jinping An, James M Gardner, Jason G Cyster
Author Information
Dan Liu: Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA. liudan@westlake.edu.cn. ORCID
Benjamin Y Winer: Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
Marissa Y Chou: Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
Hanson Tam: Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA. ORCID
Ying Xu: Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
Jinping An: Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
James M Gardner: Diabetes Center and Department of Surgery, University of California, San Francisco, San Francisco, CA, USA. ORCID
Jason G Cyster: Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA. jason.cyster@ucsf.edu. ORCID
Spleen marginal zone (MZ) B cells are important for antibody responses against blood-borne antigens. The signals they use to detect exposure to blood are not well defined. Here, using intravital two-photon microscopy in mice, we observe transient contacts between MZ B cells and red blood cells that are in flow. We show that MZ B cells use adhesion G-protein-coupled receptor ADGRE5 (CD97) for retention in the spleen. CD97 function in MZ B cells depends on its ability to undergo autoproteolytic cleavage and signaling via Gα and ARHGEF1. Red blood cell expression of the CD97 ligand CD55 is required for MZ B cell homeostasis. Applying a pulling force on CD97-transfected cells using an optical C-trap and CD55 beads leads to accumulation of active RhoA and membrane retraction. Finally, we show that CD97 deficiency leads to a reduced T cell-independent IgM response. Thus, our studies provide evidence that MZ B cells use mechanosensing to position in a manner that enhances antibody responses against blood-borne antigens.
References
Mebius, R. E. & Kraal, G. Structure and function of the spleen. Nat. Rev. Immunol. 5, 606–616 (2005).
[PMID: 16056254]
Arnon, T. I. & Cyster, J. G. Blood, sphingosine-1-phosphate and lymphocyte migration dynamics in the spleen. Curr. Top. Microbiol. Immunol. 378, 107–128 (2014).
[PMID: 24728595]
Lewis, S. M., Williams, A. & Eisenbarth, S. C. Structure and function of the immune system in the spleen. Sci. Immunol. 4, eaau6085 (2019).
[PMID: 30824527]
Martin, F. & Kearney, J. F. Marginal-zone B cells. Nat. Rev. Immunol. 2, 323–335 (2002).
[PMID: 12033738]
Allman, D. & Pillai, S. Peripheral B cell subsets. Curr. Opin. Immunol. 20, 149–157 (2008).
[PMID: 18434123]
Cinamon, G. et al. Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nat. Immunol. 5, 713–720 (2004).
[PMID: 15184895]
Cinamon, G., Zachariah, M., Lam, O. & Cyster, J. G. Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat. Immunol. 9, 54–62 (2008).
[PMID: 18037889]
Arnon, T. I., Horton, R. M., Grigorova, I. L. & Cyster, J. G. Visualization of splenic marginal zone B-cell shuttling and follicular B-cell egress. Nature 493, 684–688 (2013).
[PMID: 23263181]
Lu, T. T. & Cyster, J. G. Integrin-mediated long-term B cell retention in the splenic marginal zone. Science 297, 409–412 (2002).
[PMID: 12130787]
Cerutti, A., Cols, M. & Puga, I. Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat. Rev. Immunol. 13, 118–132 (2013).
[PMID: 23348416]
Hammad, H. et al. Transitional B cells commit to marginal zone B cell fate by Taok3-mediated surface expression of ADAM10. Nat. Immunol. 18, 313–320 (2017).
[PMID: 28068307]
Langenhan, T., Aust, G. & Hamann, J. Sticky signaling—adhesion class G protein-coupled receptors take the stage. Sci. Signal. 6, re3 (2013).
[PMID: 23695165]
Purcell, R. H. & Hall, R. A. Adhesion G protein-coupled receptors as drug targets. Annu. Rev. Pharmacol. Toxicol. 58, 429–449 (2018).
[PMID: 28968187]
Vizurraga, A., Adhikari, R., Yeung, J., Yu, M. & Tall, G. G. Mechanisms of adhesion G protein-coupled receptor activation. J. Biol. Chem. 295, 14065–14083 (2020).
[PMID: 32763969]
Hamann, J., Vogel, B., van Schijndel, G. M. & van Lier, R. A. The seven-span transmembrane receptor CD97 has a cellular ligand (CD55, DAF). J. Exp. Med. 184, 1185–1189 (1996).
[PMID: 9064337]
Karpus, O. N. et al. Shear stress-dependent downregulation of the adhesion-G protein-coupled receptor CD97 on circulating leukocytes upon contact with its ligand CD55. J. Immunol. 190, 3740–3748 (2013).
[PMID: 23447688]
Liu, D. et al. CD97 promotes spleen dendritic cell positioning and homeostasis through sensing of red blood cells. Science 375, eabi5965 (2022).
[PMID: 35143305]
Wang, T. et al. Improved antibacterial host defense and altered peripheral granulocyte homeostasis in mice lacking the adhesion class G protein receptor CD97. Infect. Immun. 75, 1144–1153 (2007).
[PMID: 17158902]
Veninga, H. et al. Analysis of CD97 expression and manipulation: antibody treatment but not gene targeting curtails granulocyte migration. J. Immunol. 181, 6574–6583 (2008).
[PMID: 18941248]
Veninga, H. et al. A novel role for CD55 in granulocyte homeostasis and anti-bacterial host defense. PLoS ONE 6, e24431 (2011).
[PMID: 21984892]
Hilbig, D. et al. Mechano-dependent phosphorylation of the PDZ-binding motif of CD97/ADGRE5 modulates cellular detachment. Cell Rep. 24, 1986–1995 (2018).
[PMID: 30134161]
Dates, A. N. et al. A fusion protein platform for analyzing tethered agonism in the adhesion family of G protein-coupled receptors. Preprint at bioRxiv https://doi.org/10.1101/2022.07.14.500097 (2022).
Ward, Y. et al. LPA receptor heterodimerizes with CD97 to amplify LPA-initiated Rho-dependent signaling and invasion in prostate cancer cells. Cancer Res. 71, 7301–7311 (2011).
[PMID: 21978933]
Bhudia, N. et al. G protein-coupling of adhesion GPCRs ADGRE2/EMR2 and ADGRE5/CD97, and activation of G protein signalling by an anti-EMR2 antibody. Sci. Rep. 10, 1004 (2020).
[PMID: 31969668]
Rieken, S. et al. G/G family G proteins regulate marginal zone B cell maturation, migration, and polarization. J. Immunol. 177, 2985–2993 (2006).
[PMID: 16920934]
Aittaleb, M., Boguth, C. A. & Tesmer, J. J. Structure and function of heterotrimeric G protein-regulated Rho guanine nucleotide exchange factors. Mol. Pharmacol. 77, 111–125 (2010).
[PMID: 19880753]
Girkontaite, I. et al. Lsc is required for marginal zone B cells, regulation of lymphocyte motility and immune responses. Nat. Immunol. 2, 855–862 (2001).
[PMID: 11526402]
Dho, S. H., Lim, J. C. & Kim, L. K. Beyond the role of CD55 as a complement component. Immune Netw. 18, e11 (2018).
[PMID: 29503741]
Russell, E. S. & Bernstein, S. E. in Biology of the Laboratory Mouse Vol. 2 (ed. Green, E. L.) Ch. 17 (Dover Publications, 1966).
Das, N., Biswas, B. & Khera, R. Membrane-bound complement regulatory proteins as biomarkers and potential therapeutic targets for SLE. Adv. Exp. Med. Biol. 735, 55–81 (2013).
[PMID: 23402019]
Ley, K., Lundgren, E., Berger, E. & Arfors, K. E. Shear-dependent inhibition of granulocyte adhesion to cultured endothelium by dextran sulfate. Blood 73, 1324–1330 (1989).
[PMID: 2467707]
Weill, J. C., Weller, S. & Reynaud, C. A. Human marginal zone B cells. Annu. Rev. Immunol. 27, 267–285 (2009).
[PMID: 19302041]
Siu, J. H. Y. et al. Two subsets of human marginal zone B cells resolved by global analysis of lymphoid tissues and blood. Sci. Immunol. 7, eabm9060 (2022).
[PMID: 35302862]
Maddox, A. S. & Burridge, K. RhoA is required for cortical retraction and rigidity during mitotic cell rounding. J. Cell Biol. 160, 255–265 (2003).
[PMID: 12538643]
Dai, J. & Sheetz, M. P. Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers. Biophys. J. 68, 988–996 (1995).
[PMID: 7756561]
Heinrich, V. & Waugh, R. E. A piconewton force transducer and its application to measurement of the bending stiffness of phospholipid membranes. Ann. Biomed. Eng. 24, 595–605 (1996).
[PMID: 8886240]
Piekny, A. J. & Glotzer, M. Anillin is a scaffold protein that links RhoA, actin, and myosin during cytokinesis. Curr. Biol. 18, 30–36 (2008).
[PMID: 18158243]
van den Eertwegh, A. J., Laman, J. D., Schellekens, M. M., Boersma, W. J. & Claassen, E. Complement-mediated follicular localization of T-independent type-2 antigens: the role of marginal zone macrophages revisited. Eur. J. Immunol. 22, 719–726 (1992).
[PMID: 1547818]
Jahr, H., Hering, B., Federlin, K. & Bretzel, R. G. Activation of human complement by collagenase and ficoll. Exp. Clin. Endocrinol. Diabetes 103, 27–29 (1995).
[PMID: 8839249]
Hamann, J., Hsiao, C. C., Lee, C. S., Ravichandran, K. S. & Lin, H. H. Adhesion GPCRs as modulators of immune cell function. Handb. Exp. Pharmacol. 234, 329–350 (2016).
[PMID: 27832495]
Boucard, A. A. Self-activated adhesion receptor proteins visualized. Nature 604, 628–630 (2022).
[PMID: 35418555]
Niu, M. et al. Structural basis for CD97 recognition of the decay-accelerating factor CD55 suggests mechanosensitive activation of adhesion GPCRs. J. Biol. Chem. 296, 100776 (2021).
[PMID: 33992645]
McEver, R. P. & Zhu, C. Rolling cell adhesion. Annu. Rev. Cell Dev. Biol. 26, 363–396 (2010).
[PMID: 19575676]
Luca, V. C. et al. Notch–Jagged complex structure implicates a catch bond in tuning ligand sensitivity. Science 355, 1320–1324 (2017).
[PMID: 28254785]
Kanchanawong, P. & Calderwood, D. A. Organization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesions. Nat. Rev. Mol. Cell Biol. 24, 142–161 (2023).
[PMID: 36168065]
Laudanna, C., Campbell, J. J. & Butcher, E. C. Role of Rho in chemoattractant-activated leukocyte adhesion through integrins. Science 271, 981–983 (1996).
[PMID: 8584934]
Yeung, J. et al. GPR56/ADGRG1 is a platelet collagen-responsive GPCR and hemostatic sensor of shear force. Proc. Natl Acad. Sci. USA 117, 28275–28286 (2020).
[PMID: 33097663]
Rubtsov, A. et al. Lsc regulates marginal-zone B cell migration and adhesion and is required for the IgM T-dependent antibody response. Immunity 23, 527–538 (2005).
[PMID: 16286020]
Muppidi, J. R. et al. Loss of signalling via Gα in germinal centre B-cell-derived lymphoma. Nature 516, 254–258 (2014).
[PMID: 25274307]
Kashimura, M. The human spleen as the center of the blood defense system. Int. J. Hematol. 112, 147–158 (2020).
[PMID: 32557229]
Francis, S. A., Shen, X., Young, J. B., Kaul, P. & Lerner, D. J. Rho GEF Lsc is required for normal polarization, migration, and adhesion of formyl-peptide-stimulated neutrophils. Blood 107, 1627–1635 (2006).
[PMID: 16263795]
Ruppel, K. M. et al. Essential role for Gα in endothelial cells during embryonic development. Proc. Natl Acad. Sci. USA 102, 8281–8286 (2005).
[PMID: 15919816]
Rickert, R. C., Rajewsky, K. & Roes, J. Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature 376, 352–355 (1995).
[PMID: 7543183]
Balazs, M., Martin, F., Zhou, T. & Kearney, J. Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity 17, 341–352 (2002).
[PMID: 12354386]
Hamann, J. et al. Characterization of the CD55 (DAF)-binding site on the seven-span transmembrane receptor CD97. Eur. J. Immunol. 28, 1701–1707 (1998).
[PMID: 9603477]