Targeted elimination of Vancomycin resistance gene vanA by CRISPR-Cas9 system.

Shuan Tao, Chunwei Hu, Yewei Fang, He Zhang, Yao Xu, Lin Zheng, Luyan Chen, Wei Liang
Author Information
  1. Shuan Tao: Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, No 59. Liuting Road, Haishu District, Ningbo, 315010, China.
  2. Chunwei Hu: The Biobank of The First Affiliated Hospital of Ningbo University, Ningbo, China.
  3. Yewei Fang: Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, No 59. Liuting Road, Haishu District, Ningbo, 315010, China.
  4. He Zhang: Bengbu Medical College, Bengbu, China.
  5. Yao Xu: School of Medicine, Ningbo University, Ningbo, China.
  6. Lin Zheng: Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, No 59. Liuting Road, Haishu District, Ningbo, 315010, China.
  7. Luyan Chen: Department of Blood Transfusion, The First Affiliated Hospital of Ningbo University, Ningbo, China.
  8. Wei Liang: Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, No 59. Liuting Road, Haishu District, Ningbo, 315010, China. hslwys@163.com.

Abstract

OBJECTIVE: The purpose of this study is to reduce the spread of the vanA gene by curing the vanA-harboring plasmid of vancomycin-resistant using the CRISPR-Cas9 system.
METHODS: Two specific spacer sequence (sgRNAs) specific was designed to target the vanA gene and cloned into plasmid CRISPR-Cas9. The role of the CRISPR-Cas system in the plasmid elimination of drug-resistance genes was verified by chemically transformation and conjugation delivery methods. Moreover, the elimination efficiency in strains was evaluated by plate counting, PCR, and quantitative real-time PCR (qPCR). Susceptibility testing was performed by broth microdilution assay and by Etest strips (bioMérieux, France) to detect changes in bacterial drug resistance phenotype after drug resistance plasmid clearance.
RESULTS: In the study, we constructed a specific prokaryotic CRISPR-Cas9 system plasmid targeting cleavage of the vanA gene. PCR and qPCR results indicated that recombinant pCas9-sgRNA plasmid can efficiently clear vanA-harboring plasmids. There was no significant correlation between sgRNA lengths and curing efficiency. In addition, the drug susceptibility test results showed that the bacterial resistance to vancomycin was significantly reduced after the vanA-containing drug-resistant plasmid was specifically cleaved by the CRISPR-Cas system. The CRISPR-Cas9 system can block the horizontal transfer of the conjugated plasmid pUC19-vanA.
CONCLUSION: In conclusion, our study demonstrated that CRISPR-Cas9 achieved plasmid clearance and reduced antimicrobial resistance. The CRISPR-Cas9 system could block the horizontal transfer of plasmid carrying vanA. This strategy provided a great potential to counteract the ever-worsening spread of the vanA gene among bacterial pathogens and laid the foundation for subsequent research using the CRISPR-Cas9 system as adjuvant antibiotic therapy.

Keywords

References

  1. Theranostics. 2021 Mar 13;11(11):5464-5490 [PMID: 33859758]
  2. Antimicrob Agents Chemother. 2020 Aug 20;64(9): [PMID: 32631827]
  3. Infect Drug Resist. 2020 Apr 22;13:1171-1178 [PMID: 32368108]
  4. Int J Mol Sci. 2021 Nov 17;22(22): [PMID: 34830278]
  5. Front Microbiol. 2016 Feb 19;7:173 [PMID: 26925045]
  6. Front Microbiol. 2022 Mar 31;13:859854 [PMID: 35432284]
  7. J Antimicrob Chemother. 2007 May;59(5):880-5 [PMID: 17353219]
  8. PLoS Pathog. 2018 Jun 14;14(6):e1006990 [PMID: 29902258]
  9. Infect Drug Resist. 2020 Apr 20;13:1111-1121 [PMID: 32368102]
  10. J Microbiol Biotechnol. 2016 Feb;26(2):394-401 [PMID: 26502735]
  11. mBio. 2018 Nov 13;9(6): [PMID: 30425154]
  12. Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7267-72 [PMID: 26060300]
  13. Nat Rev Microbiol. 2012 Mar 16;10(4):266-78 [PMID: 22421879]
  14. Sci Rep. 2017 Mar 21;7:44929 [PMID: 28322317]
  15. Virulence. 2012 Aug 15;3(5):421-33 [PMID: 23076243]
  16. Sci Rep. 2016 Nov 24;6:37895 [PMID: 27883076]
  17. Front Pharmacol. 2018 Jul 12;9:749 [PMID: 30050439]
  18. Curr Opin Infect Dis. 2012 Aug;25(4):385-94 [PMID: 22614523]
  19. Plant Biotechnol J. 2020 Mar;18(3):721-731 [PMID: 31452351]
  20. Ann Clin Microbiol Antimicrob. 2019 Jul 5;18(1):21 [PMID: 31277669]
  21. mBio. 2022 Aug 30;13(4):e0111922 [PMID: 35913163]
  22. Environ Int. 2018 Jan;110:160-172 [PMID: 29107352]
  23. Antimicrob Agents Chemother. 2019 Oct 22;63(11): [PMID: 31527030]
  24. Front Microbiol. 2021 Feb 25;12:642829 [PMID: 33717041]
  25. Adv Drug Deliv Rev. 2021 Sep;176:113891 [PMID: 34324887]
  26. Nat Biotechnol. 2014 Mar;32(3):279-284 [PMID: 24463574]
  27. J Antimicrob Chemother. 2021 Dec 24;77(1):74-82 [PMID: 34613377]
  28. Microb Drug Resist. 2018 Jun;24(5):590-606 [PMID: 29058560]
  29. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  30. Mar Life Sci Technol. 2020 Feb;2(1):1-5 [PMID: 33313574]
  31. Indian J Med Res. 2016 Mar;143(3):357-61 [PMID: 27241650]
  32. Nat Protoc. 2013 Nov;8(11):2281-2308 [PMID: 24157548]
  33. Nat Biotechnol. 2014 Nov;32(11):1146-50 [PMID: 25282355]
  34. Appl Environ Microbiol. 2020 Apr 17;86(9): [PMID: 32169935]
  35. Appl Environ Microbiol. 2016 Oct 27;82(22):6672-6681 [PMID: 27613679]
  36. J Biotechnol. 2017 Jan 10;241:136-146 [PMID: 27845164]
  37. Sci Rep. 2016 Jun 24;6:28566 [PMID: 27338021]
  38. Nucleic Acids Res. 2021 Jan 11;49(1):584-594 [PMID: 33332569]
  39. Bioinformatics. 2017 Nov 15;33(22):3642-3644 [PMID: 28961776]
  40. Clin Infect Dis. 2006 Jan 1;42 Suppl 1:S25-34 [PMID: 16323116]

Grants

  1. 2022z2202022/the Project of the key R & D program of 2022 year of Ningbo Science and Technology Bureau
  2. 2023j020/Key Project of Ningbo Municipal Science and Technology Bureau

MeSH Term

Vancomycin
RNA, Guide, CRISPR-Cas Systems
Vancomycin Resistance
CRISPR-Cas Systems
Anti-Bacterial Agents
Plasmids
Bacterial Proteins

Chemicals

Vancomycin
RNA, Guide, CRISPR-Cas Systems
Anti-Bacterial Agents
Bacterial Proteins

Word Cloud

Created with Highcharts 10.0.0plasmidCRISPR-Cas9systemvanAresistancegenestudyspecificeliminationPCRbacterialdrugspreadcuringvanA-harboringusingCRISPR-CasefficiencyqPCRclearanceresultscanreducedblockhorizontaltransferOBJECTIVE:purposereducevancomycin-resistantMETHODS:TwospacersequencesgRNAsdesignedtargetclonedroledrug-resistancegenesverifiedchemicallytransformationconjugationdeliverymethodsMoreoverstrainsevaluatedplatecountingquantitativereal-timeSusceptibilitytestingperformedbrothmicrodilutionassayEteststripsbioMérieuxFrancedetectchangesphenotypeRESULTS:constructedprokaryotictargetingcleavageindicatedrecombinantpCas9-sgRNAefficientlyclearplasmidssignificantcorrelationsgRNAlengthsadditionsusceptibilitytestshowedvancomycinsignificantlyvanA-containingdrug-resistantspecificallycleavedconjugatedpUC19-vanACONCLUSION:conclusiondemonstratedachievedantimicrobialcarryingstrategyprovidedgreatpotentialcounteractever-worseningamongpathogenslaidfoundationsubsequentresearchadjuvantantibiotictherapyTargetedVancomycinAntimicrobialEnterococcus

Similar Articles

Cited By