StableDNAm: towards a stable and efficient model for predicting DNA methylation based on adaptive feature correction learning.

Linlin Zhuo, Rui Wang, Xiangzheng Fu, Xiaojun Yao
Author Information
  1. Linlin Zhuo: College of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou, 325000, China.
  2. Rui Wang: College of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou, 325000, China.
  3. Xiangzheng Fu: College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410000, China. fxz326@hnu.edu.cn.
  4. Xiaojun Yao: Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China. xjyao@mpu.edu.mo.

Abstract

BACKGROUND: DNA methylation, instrumental in numerous life processes, underscores the paramount importance of its accurate prediction. Recent studies suggest that deep learning, due to its capacity to extract profound insights, provides a more precise DNA methylation prediction. However, issues related to the stability and generalization performance of these models persist.
RESULTS: In this study, we introduce an efficient and stable DNA methylation prediction model. This model incorporates a feature fusion approach, adaptive feature correction technology, and a contrastive learning strategy. The proposed model presents several advantages. First, DNA sequences are encoded at four levels to comprehensively capture intricate information across multi-scale and low-span features. Second, we design a sequence-specific feature correction module that adaptively adjusts the weights of sequence features. This improvement enhances the model's stability and scalability, or its generality. Third, our contrastive learning strategy mitigates the instability issues resulting from sparse data. To validate our model, we conducted multiple sets of experiments on commonly used datasets, demonstrating the model's robustness and stability. Simultaneously, we amalgamate various datasets into a single, unified dataset. The experimental outcomes from this combined dataset substantiate the model's robust adaptability.
CONCLUSIONS: Our research findings affirm that the StableDNAm model is a general, stable, and effective instrument for DNA methylation prediction. It holds substantial promise for providing invaluable assistance in future methylation-related research and analyses.

Keywords

References

  1. Nucleic Acids Res. 2018 Jan 4;46(D1):D146-D151 [PMID: 29145608]
  2. Comput Biol Med. 2023 Sep;163:107143 [PMID: 37339574]
  3. Biotechniques. 2008 Apr;44(5):633-4, 636-41 [PMID: 18474038]
  4. Bioinformatics. 2021 Dec 11;37(24):4603-4610 [PMID: 34601568]
  5. Nat Neurosci. 2011 Oct 30;14(12):1607-16 [PMID: 22037496]
  6. Nature. 2009 Nov 19;462(7271):315-22 [PMID: 19829295]
  7. Nat Biotechnol. 2012 Dec;30(12):1232-9 [PMID: 23138224]
  8. Nat Genet. 2017 Jun;49(6):964-968 [PMID: 28481340]
  9. Nucleic Acids Res. 2005 Oct 13;33(18):5868-77 [PMID: 16224102]
  10. Cell. 2015 May 7;161(4):868-78 [PMID: 25936839]
  11. Nat Rev Genet. 2013 Mar;14(3):204-20 [PMID: 23400093]
  12. Molecules. 2021 Dec 07;26(24): [PMID: 34946497]
  13. Front Cell Dev Biol. 2020 Jul 28;8:614 [PMID: 32850787]
  14. Annu Rev Genet. 1991;25:229-53 [PMID: 1812808]
  15. Genome Biol. 2022 Oct 17;23(1):219 [PMID: 36253864]
  16. Front Genet. 2019 Oct 11;10:1071 [PMID: 31681441]
  17. Mol Cell. 2018 Jul 19;71(2):306-318.e7 [PMID: 30017583]
  18. Brief Bioinform. 2022 Mar 10;23(2): [PMID: 35225328]
  19. Oncogene. 2013 Jan 31;32(5):663-9 [PMID: 22391558]
  20. Front Genet. 2021 Feb 23;12:639461 [PMID: 33708244]
  21. Curr Opin Chem Biol. 2012 Dec;16(5-6):516-24 [PMID: 23092881]
  22. Brief Bioinform. 2021 May 20;22(3): [PMID: 32608476]
  23. Nat Commun. 2021 Feb 4;12(1):795 [PMID: 33542217]
  24. Indian Pediatr. 2011 Apr;48(4):277-87 [PMID: 21532099]
  25. Cell. 2015 May 7;161(4):710-3 [PMID: 25936836]
  26. Brief Bioinform. 2023 Jul 20;24(4): [PMID: 37328701]
  27. Bioinformatics. 2021 Aug 9;37(15):2112-2120 [PMID: 33538820]
  28. Epigenomics. 2017 Jan;9(1):77-91 [PMID: 27936926]
  29. J Am Chem Soc. 2019 Jun 5;141(22):8694-8697 [PMID: 31117646]
  30. PLoS Comput Biol. 2021 Feb 18;17(2):e1008767 [PMID: 33600435]
  31. Plant J. 2019 Feb;97(4):779-794 [PMID: 30427081]
  32. Bioinformatics. 2020 Jan 15;36(2):388-392 [PMID: 31297537]
  33. Cell Mol Life Sci. 2014 Feb;71(3):405-18 [PMID: 23912899]
  34. iScience. 2020 Apr 24;23(4):100991 [PMID: 32240948]
  35. Bioinformatics. 2020 Jun 1;36(11):3327-3335 [PMID: 32108866]
  36. Brief Bioinform. 2023 Jul 20;24(4): [PMID: 37427977]
  37. Nat Struct Mol Biol. 2013 Mar;20(3):274-81 [PMID: 23463312]
  38. Nat Rev Genet. 2012 May 29;13(7):484-92 [PMID: 22641018]
  39. Nature. 2015 Jan 15;517(7534):321-6 [PMID: 25592537]
  40. Gene. 1995 May 19;157(1-2):3-11 [PMID: 7607512]

MeSH Term

DNA Methylation
Protein Processing, Post-Translational

Word Cloud

Created with Highcharts 10.0.0DNAmethylationmodellearningpredictionfeaturecorrectionstabilitystablefeaturesmodel'sissuesefficientadaptivecontrastivestrategylow-spanscalabilitydatasetsdatasetresearchBACKGROUND:instrumentalnumerouslifeprocessesunderscoresparamountimportanceaccurateRecentstudiessuggestdeepduecapacityextractprofoundinsightsprovidespreciseHoweverrelatedgeneralizationperformancemodelspersistRESULTS:studyintroduceincorporatesfusionapproachtechnologyproposedpresentsseveraladvantagesFirstsequencesencodedfourlevelscomprehensivelycaptureintricateinformationacrossmulti-scaleSeconddesignsequence-specificmoduleadaptivelyadjustsweightssequenceimprovementenhancesgeneralityThirdmitigatesinstabilityresultingsparsedatavalidateconductedmultiplesetsexperimentscommonlyuseddemonstratingrobustnessSimultaneouslyamalgamatevarioussingleunifiedexperimentaloutcomescombinedsubstantiaterobustadaptabilityCONCLUSIONS:findingsaffirmStableDNAmgeneraleffectiveinstrumentholdssubstantialpromiseprovidinginvaluableassistancefuturemethylation-relatedanalysesStableDNAm:towardspredictingbasedContrastiveFeatureMulti-scaleStability

Similar Articles

Cited By