Wastewater-based surveillance models for COVID-19: A focused review on spatio-temporal models.

Fatemeh Torabi, Guangquan Li, Callum Mole, George Nicholson, Barry Rowlingson, Camila Rangel Smith, Radka Jersakova, Peter J Diggle, Marta Blangiardo
Author Information
  1. Fatemeh Torabi: Turing-RSS Health Data Lab, London, UK.
  2. Guangquan Li: Turing-RSS Health Data Lab, London, UK.
  3. Callum Mole: Turing-RSS Health Data Lab, London, UK.
  4. George Nicholson: Turing-RSS Health Data Lab, London, UK.
  5. Barry Rowlingson: Turing-RSS Health Data Lab, London, UK.
  6. Camila Rangel Smith: Turing-RSS Health Data Lab, London, UK.
  7. Radka Jersakova: Turing-RSS Health Data Lab, London, UK.
  8. Peter J Diggle: Turing-RSS Health Data Lab, London, UK.
  9. Marta Blangiardo: Turing-RSS Health Data Lab, London, UK.

Abstract

The evident shedding of the SARS-CoV-2 RNA particles from infected individuals into the wastewater opened up a tantalizing array of possibilities for prediction of COVID-19 prevalence prior to symptomatic case identification through community testing. Many countries have therefore explored the use of wastewater metrics as a surveillance tool, replacing traditional direct measurement of prevalence with cost-effective approaches based on SARS-CoV-2 RNA concentrations in wastewater samples. Two important aspects in building prediction models are: time over which the prediction occurs and space for which the predicted case numbers is shown. In this review, our main focus was on finding mathematical models which take into the account both the time-varying and spatial nature of wastewater-based metrics into account. We used six main characteristics as our assessment criteria: i) modelling approach; ii) temporal coverage; iii) spatial coverage; iv) sample size; v) wastewater sampling method; and vi) covariates included in the modelling. The majority of studies in the early phases of the pandemic recognized the temporal association of SARS-CoV-2 RNA concentration level in wastewater with the number of COVID-19 cases, ignoring their spatial context. We examined 15 studies up to April 2023, focusing on models considering both temporal and spatial aspects of wastewater metrics. Most early studies correlated temporal SARS-CoV-2 RNA levels with COVID-19 cases but overlooked spatial factors. Linear regression and SEIR models were commonly used (n = 10, 66.6 % of studies), along with machine learning (n = 1, 6.6 %) and Bayesian approaches (n = 1, 6.6 %) in some cases. Three studies employed spatio-temporal modelling approach (n = 3, 20.0 %). We conclude that the development, validation and calibration of further spatio-temporally explicit models should be done in parallel with the advancement of wastewater metrics before the potential of wastewater as a surveillance tool can be fully realised.

Keywords

References

  1. Sci Total Environ. 2023 Jun 20;878:162953 [PMID: 36948304]
  2. Sci Total Environ. 2022 Oct 20;844:157040 [PMID: 35779714]
  3. Water Res. 2020 Nov 1;186:116404 [PMID: 32942178]
  4. Sci Total Environ. 2020 Dec 10;747:141245 [PMID: 32768768]
  5. Sci Rep. 2021 Sep 30;11(1):19456 [PMID: 34593871]
  6. Int J Infect Dis. 2020 Sep;98:252-260 [PMID: 32619760]
  7. Environ Sci Technol. 2020 Apr 7;54(7):3733-3735 [PMID: 32202421]
  8. J Hazard Mater. 2022 Feb 15;424(Pt B):127456 [PMID: 34655869]
  9. J Theor Biol. 2021 Dec 7;530:110874 [PMID: 34425136]
  10. Sci Total Environ. 2022 Jan 15;804:150151 [PMID: 34623953]
  11. J Environ Chem Eng. 2020 Oct;8(5):104317 [PMID: 32834991]
  12. Sci Total Environ. 2021 Mar 15;760:144215 [PMID: 33340739]
  13. BMJ Open. 2022 Nov 17;12(11):e060838 [PMID: 36396316]
  14. MMWR Morb Mortal Wkly Rep. 2021 Sep 10;70(36):1242-1244 [PMID: 34499630]
  15. J Water Health. 2022 Feb;20(2):287-299 [PMID: 36366987]
  16. Wellcome Open Res. 2020 Aug 25;5:200 [PMID: 33997297]
  17. JAMA Netw Open. 2020 Jun 1;3(6):e2011335 [PMID: 32525549]
  18. Sci Total Environ. 2021 Mar 20;761:144216 [PMID: 33360129]
  19. Sci Total Environ. 2021 Oct 20;792:148442 [PMID: 34147797]
  20. Water Res. 2021 Sep 1;202:117433 [PMID: 34304074]
  21. Water Res. 2021 Jul 15;200:117214 [PMID: 34058486]
  22. Science. 2020 Jun 19;368(6497):1362-1367 [PMID: 32371477]
  23. Sci Total Environ. 2022 Mar 15;812:151431 [PMID: 34748841]
  24. Sci Total Environ. 2022 Mar 25;814:152503 [PMID: 34954186]
  25. Syst Rev. 2021 Mar 29;10(1):89 [PMID: 33781348]
  26. MMWR Morb Mortal Wkly Rep. 2022 Jan 21;71(3):103-105 [PMID: 35051130]
  27. Water Res. 2022 Apr 1;212:118070 [PMID: 35101695]
  28. Virus Res. 2020 Nov;289:198147 [PMID: 32866537]
  29. Water Res. 2020 Nov 1;186:116296 [PMID: 32841929]
  30. Environ Technol Innov. 2021 Aug;23:101696 [PMID: 34250217]
  31. Environ Sci Technol Lett. 2020 May 20;7(7):511-516 [PMID: 37566285]
  32. Sci Total Environ. 2022 Jun 25;827:154235 [PMID: 35245552]
  33. Sci Total Environ. 2021 Oct 1;789:147947 [PMID: 34051491]
  34. Sci Total Environ. 2023 Feb 1;858(Pt 1):159748 [PMID: 36306840]
  35. Chaos Solitons Fractals. 2022 Nov;164:112671 [PMID: 36091637]
  36. Lancet Planet Health. 2021 Dec;5(12):e874-e881 [PMID: 34895497]
  37. Clin Microbiol Infect. 2021 Nov;27(11):1666-1671 [PMID: 34111585]
  38. Nat Microbiol. 2022 Jan;7(1):97-107 [PMID: 34972825]
  39. Sci Total Environ. 2022 Aug 20;835:155410 [PMID: 35469875]
  40. Nat Med. 2020 Jul;26(7):1037-1040 [PMID: 32393804]
  41. Sci Total Environ. 2022 Jan 15;804:150060 [PMID: 34798721]
  42. Sci Total Environ. 2021 Jul 15;778:146294 [PMID: 33714094]
  43. Water Sci Technol. 2021 Jan;83(2):251-256 [PMID: 33504691]
  44. Lancet. 2020 Mar 28;395(10229):1047-1053 [PMID: 32199075]
  45. Sci Total Environ. 2020 Aug 1;728:138764 [PMID: 32387778]
  46. Sci Total Environ. 2022 Mar 15;812:152597 [PMID: 34954185]
  47. Sci Total Environ. 2021 Oct 15;791:148271 [PMID: 34130001]
  48. Sci Total Environ. 2020 Nov 15;743:140621 [PMID: 32758821]
  49. Med. 2022 Dec 9;3(12):883-900.e13 [PMID: 36198312]
  50. Environ Sci Technol. 2021 Nov 16;55(22):15276-15286 [PMID: 34738785]
  51. Environ Sci Technol. 2020 Jul 7;54(13):7754-7757 [PMID: 32530639]
  52. Curr Opin Environ Sci Health. 2020 Oct;17:1-7 [PMID: 32395676]
  53. Water Res. 2020 Jul 15;179:115907 [PMID: 32389891]
  54. Environ Int. 2023 Feb;172:107765 [PMID: 36709674]
  55. Nat Biotechnol. 2020 Oct;38(10):1164-1167 [PMID: 32948856]
  56. Sci Total Environ. 2022 May 10;820:153290 [PMID: 35066048]

Grants

  1. MR/S019669/1/Medical Research Council

Word Cloud

Created with Highcharts 10.0.0wastewatermodelsspatialstudiesSARS-CoV-2RNACOVID-19metricssurveillancemodellingtemporalpredictioncases6 %Wastewater-basedprevalencecasetoolapproachesaspectsreviewmainaccountusedapproachcoverageearlyn = 16spatio-temporalevidentsheddingparticlesinfectedindividualsopenedtantalizingarraypossibilitiespriorsymptomaticidentificationcommunitytestingManycountriesthereforeexploredusereplacingtraditionaldirectmeasurementcost-effectivebasedconcentrationssamplesTwoimportantbuildingare:timeoccursspacepredictednumbersshownfocusfindingmathematicaltaketime-varyingnaturewastewater-basedsixcharacteristicsassessmentcriteria:iiiiiivsamplesizevsamplingmethodvicovariatesincludedmajorityphasespandemicrecognizedassociationconcentrationlevelnumberignoringcontextexamined15April2023focusingconsideringcorrelatedlevelsoverlookedfactorsLinearregressionSEIRcommonlyn = 1066alongmachinelearningBayesianThreeemployedn = 3200 %concludedevelopmentvalidationcalibrationspatio-temporallyexplicitdoneparalleladvancementpotentialcanfullyrealisedCOVID-19:focusedSpatio-temporalstatisticalepidemiology

Similar Articles

Cited By