Automated MUltiscale simulation environment.

Albert Sabadell-Rendón, Kamila Kaźmierczak, Santiago Morandi, Florian Euzenat, Daniel Curulla-Ferré, Núria López
Author Information
  1. Albert Sabadell-Rendón: Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, (BIST) Av. Paisos Catalans 16 Tarragona 43007 Spain asabadell@iciq.es nlopez@iciq.es.
  2. Kamila Kaźmierczak: TotalEnergies, TotalEnergies One Tech Belgium Zone industrielle C, 7181 Feluy Belgium.
  3. Santiago Morandi: Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, (BIST) Av. Paisos Catalans 16 Tarragona 43007 Spain asabadell@iciq.es nlopez@iciq.es. ORCID
  4. Florian Euzenat: TotalEnergies Research and Technology Gonfreville, Route Industrielle, Carrefour 4, Port 4864 76700 Rogerville France.
  5. Daniel Curulla-Ferré: TotalEnergies, TotalEnergies One Tech Belgium Zone industrielle C, 7181 Feluy Belgium.
  6. Núria López: Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, (BIST) Av. Paisos Catalans 16 Tarragona 43007 Spain asabadell@iciq.es nlopez@iciq.es. ORCID

Abstract

Multiscale techniques integrating detailed atomistic information on materials and reactions to predict the performance of heterogeneous catalytic full-scale reactors have been suggested but lack seamless implementation. The largest challenges in the multiscale modeling of reactors can be grouped into two main categories: catalytic complexity and the difference between time and length scales of chemical and transport phenomena. Here we introduce the Automated MUltiscale Simulation Environment AMUSE, a workflow that starts from Density Functional Theory (DFT) data, automates the analysis of the reaction networks through graph theory, prepares it for microkinetic modeling, and subsequently integrates the results into a standard open-source Computational Fluid Dynamics (CFD) code. We demonstrate the capabilities of AMUSE by applying it to the unimolecular iso-propanol dehydrogenation reaction and then, increasing the complexity, to the pre-commercial Pd/InO catalyst employed for the CO hydrogenation to methanol. The results show that AMUSE allows the computational investigation of heterogeneous catalytic reactions in a comprehensive way, providing essential information for catalyst design from the atomistic to the reactor scale level.

References

  1. Nat Commun. 2019 Jul 29;10(1):3377 [PMID: 31358766]
  2. Ind Eng Chem Res. 2021 Jul 28;60(29):10522-10538 [PMID: 34349343]
  3. J Chem Theory Comput. 2022 Dec 13;18(12):7470-7482 [PMID: 36321652]
  4. Angew Chem Int Ed Engl. 2014 Nov 17;53(47):12746-50 [PMID: 25168456]
  5. Sci Data. 2020 Sep 8;7(1):299 [PMID: 32901046]
  6. Chemistry. 2012 Aug 6;18(32):9955-64 [PMID: 22782805]
  7. Chem Sci. 2017 Dec 12;9(4):825-835 [PMID: 29675146]
  8. J Chem Inf Model. 2021 Jun 28;61(6):2686-2696 [PMID: 34048230]
  9. Org Lett. 2020 Apr 17;22(8):2873-2877 [PMID: 32101443]
  10. J Comput Chem. 2021 Feb 15;42(5):379-391 [PMID: 33315262]
  11. Nature. 2018 Jul;559(7715):547-555 [PMID: 30046072]
  12. J Comput Chem. 2021 Oct 30;42(28):2036-2048 [PMID: 34387374]
  13. J Phys Condens Matter. 2017 Jul 12;29(27):273002 [PMID: 28323250]
  14. J Chem Inf Model. 2015 Jan 26;55(1):95-103 [PMID: 25469626]
  15. Sci Data. 2019 May 28;6(1):75 [PMID: 31138816]
  16. J Chem Phys. 2019 Jul 7;151(1):014112 [PMID: 31272177]
  17. Nat Methods. 2020 Mar;17(3):261-272 [PMID: 32015543]
  18. J Chem Inf Model. 2021 Jul 26;61(7):3431-3441 [PMID: 34265203]
  19. ACS Phys Chem Au. 2022 Feb 04;2(3):225-236 [PMID: 36855573]

Word Cloud

Created with Highcharts 10.0.0catalyticAMUSEatomisticinformationreactionsheterogeneousreactorsmodelingcomplexityAutomatedMUltiscalereactionresultscatalystMultiscaletechniquesintegratingdetailedmaterialspredictperformancefull-scalesuggestedlackseamlessimplementationlargestchallengesmultiscalecangroupedtwomaincategories:differencetimelengthscaleschemicaltransportphenomenaintroduceSimulationEnvironmentworkflowstartsDensityFunctionalTheoryDFTdataautomatesanalysisnetworksgraphtheorypreparesmicrokineticsubsequentlyintegratesstandardopen-sourceComputationalFluidDynamicsCFDcodedemonstratecapabilitiesapplyingunimoleculariso-propanoldehydrogenationincreasingpre-commercialPd/InOemployedCOhydrogenationmethanolshowallowscomputationalinvestigationcomprehensivewayprovidingessentialdesignreactorscalelevelsimulationenvironment

Similar Articles

Cited By