BIOMOLECULAR ACTIVITY OF CRYPTOCOCCUS DURING CRYPTOCOCCOSIS: A REVIEW OF MOLECULAR INTERACTIONS OF CRYPTOCOCCUS WITH HUMAN IMMUNE SYSTEM AND BLOOD-BRAIN-BARRIER.

Julian Julian, Adawiyah Robiatul, Wahdini Sri
Author Information
  1. Julian Julian: Master's Programme in biomedical science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
  2. Adawiyah Robiatul: Master's Programme in biomedical science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
  3. Wahdini Sri: Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.

Abstract

Global mycosis is still a problem. One of these is the cryptococcal disease. A systemic mycosis brought on by Cryptococcus is called cryptococcosis. Host immunological conditions influence infection with cryptococcosis. When environmental spores are inhaled by the host, the spores get to the lungs, an infection is created. Alveolar macrophages and other immune cells recognize in the lung. The initial line of defense against pathogens in the phagolysosome is provided by alveolar macrophages found in the lungs. When the immune SYSTEM is weak, Cryptococcus uses the evasion SYSTEM as a molecular interaction with the immune SYSTEM and persists in the lungs without causing any symptoms such as Factor Transcription, Cell masking, N-glycan structure, Extracellular molecule, and Antioxidant SYSTEM. The evasion mechanism protects and makes Cryptococcus disseminate throughout the other organs, especially CNS. If Cryptococcus escapes against the host immune SYSTEM, it will disseminate to other organs, especially Cerebrospinal SYSTEM by Three mechanisms. There are Trojan Horse, Paracellular, and Transcellular interactions with BLOOD-Brain Barrier. Disease severity is determined by the Interaction between the host's immune SYSTEM and the fungus.

Keywords

References

  1. Cell Rep. 2016 Dec 6;17(10):2572-2583 [PMID: 27926862]
  2. mBio. 2023 Apr 25;14(2):e0264022 [PMID: 36786559]
  3. Front Immunol. 2017 Nov 22;8:1623 [PMID: 29213274]
  4. mBio. 2014 Jun 03;5(3):e01101-14 [PMID: 24895304]
  5. Med Mycol. 2015 Jun;53(5):493-504 [PMID: 25841056]
  6. Future Microbiol. 2012 Nov;7(11):1297-313 [PMID: 23075448]
  7. Front Immunol. 2018 Feb 01;9:123 [PMID: 29449845]
  8. J Biol Chem. 2015 May 29;290(22):13779-90 [PMID: 25825492]
  9. Eukaryot Cell. 2010 Jun;9(6):835-46 [PMID: 20382758]
  10. Database (Oxford). 2021 Apr 7;2021: [PMID: 33826699]
  11. mBio. 2020 May 12;11(3): [PMID: 32398313]
  12. Front Med (Lausanne). 2019 Jun 19;6:129 [PMID: 31275938]
  13. Exp Ther Med. 2017 Dec;14(6):5243-5250 [PMID: 29285049]
  14. PLoS Pathog. 2018 Jun 15;14(6):e1007144 [PMID: 29906292]
  15. J Infect Dis. 2014 Jan 1;209(1):74-82 [PMID: 23945372]
  16. Nat Commun. 2019 Oct 30;10(1):4950 [PMID: 31666517]
  17. Infect Immun. 2015 Apr;83(4):1296-304 [PMID: 25605772]
  18. J Fungi (Basel). 2022 Oct 12;8(10): [PMID: 36294634]
  19. FEMS Yeast Res. 2020 May 1;20(3): [PMID: 32391887]
  20. PLoS Genet. 2010 May 13;6(5):e1000953 [PMID: 20485569]
  21. Front Immunol. 2021 Jul 23;12:709695 [PMID: 34367172]
  22. Cell Mol Life Sci. 2021 Apr;78(7):3219-3238 [PMID: 33449153]
  23. mBio. 2017 Jan 31;8(1): [PMID: 28143979]
  24. PLoS One. 2012;7(12):e51403 [PMID: 23251520]
  25. Mem Inst Oswaldo Cruz. 2018;113(7):e180060 [PMID: 29668826]
  26. mLife. 2022 Mar 24;1(1):79-91 [PMID: 38818325]
  27. J Fungi (Basel). 2018 Mar 07;4(1): [PMID: 29518906]
  28. J Biol Chem. 2021 Jan-Jun;296:100391 [PMID: 33567338]
  29. mBio. 2013 Jun 18;4(3):e00264-13 [PMID: 23781069]
  30. J Fungi (Basel). 2017;3(4): [PMID: 29333430]
  31. J Biol Chem. 2022 Apr;298(4):101769 [PMID: 35218774]
  32. Sci Rep. 2021 Jan 14;11(1):1407 [PMID: 33446850]
  33. Nat Rev Immunol. 2022 Sep;22(9):532-533 [PMID: 35945352]
  34. PLoS Pathog. 2020 Feb 26;16(2):e1008361 [PMID: 32101593]
  35. Infect Dis Poverty. 2023 Mar 17;12(1):20 [PMID: 36932414]
  36. Cell Host Microbe. 2011 Mar 17;9(3):243-251 [PMID: 21402362]
  37. Immunity. 2022 Sep 13;55(9):1591-1593 [PMID: 36103858]
  38. Nat Rev Immunol. 2013 Sep;13(9):679-92 [PMID: 23954936]
  39. Cell Microbiol. 2008 Jun;10(6):1274-85 [PMID: 18284419]
  40. J Fungi (Basel). 2021 Mar 20;7(3): [PMID: 33804601]
  41. Int Arch Allergy Immunol. 2020;181(9):651-664 [PMID: 32585675]
  42. J Immunol. 2005 Mar 15;174(6):3461-8 [PMID: 15749881]
  43. Int Immunol. 2008 Dec;20(12):1527-41 [PMID: 18927317]
  44. J Fungi (Basel). 2017 Sep;3(3): [PMID: 28936464]
  45. Sci Rep. 2023 Jan 20;13(1):1175 [PMID: 36670130]
  46. Curr Top Microbiol Immunol. 2020;429:63-101 [PMID: 32936383]
  47. Front Immunol. 2018 Apr 04;9:651 [PMID: 29670625]
  48. Front Physiol. 2020 Aug 06;11:914 [PMID: 32848858]
  49. PLoS Pathog. 2015 Jun 18;11(6):e1004843 [PMID: 26087178]
  50. PLoS One. 2017 Mar 10;12(3):e0173866 [PMID: 28282442]
  51. J Leukoc Biol. 2017 Sep;102(3):677-683 [PMID: 28292945]
  52. J Biomed Sci. 2016 Feb 20;23:28 [PMID: 26897523]
  53. mSphere. 2019 Nov 20;4(6): [PMID: 31748248]
  54. Antioxidants (Basel). 2021 Feb 19;10(2): [PMID: 33669824]
  55. Int J Mol Sci. 2022 Sep 13;23(18): [PMID: 36142553]
  56. Front Immunol. 2018 Apr 30;9:855 [PMID: 29760698]
  57. Cell Microbiol. 2018 Mar;20(3): [PMID: 29197141]
  58. Nature. 2022 Aug;608(7921):161-167 [PMID: 35896747]
  59. PLoS One. 2012;7(10):e47853 [PMID: 23110112]
  60. PLoS Pathog. 2018 May 18;14(5):e1006978 [PMID: 29775474]
  61. Immunity. 2018 Feb 20;48(2):202-213 [PMID: 29466753]
  62. Eukaryot Cell. 2012 Jan;11(1):53-67 [PMID: 22080454]
  63. Front Cell Infect Microbiol. 2018 Nov 13;8:369 [PMID: 30483479]
  64. FASEB J. 2020 Oct;34(10):13125-13139 [PMID: 32830349]
  65. Med Mycol J. 2022;63(4):133-138 [PMID: 36450565]
  66. Virulence. 2019 Dec;10(1):490-501 [PMID: 31119976]
  67. Microbes Infect. 2016 Jan;18(1):57-67 [PMID: 26369713]
  68. Stroke Vasc Neurol. 2018 Dec 5;4(2):78-82 [PMID: 31338215]
  69. Microbes Infect. 2014 Oct;16(10):845-54 [PMID: 25193031]
  70. Mol Cell Biol. 2014 Feb;34(4):673-84 [PMID: 24324006]
  71. Mediators Inflamm. 2020 Dec 3;2020:3412763 [PMID: 33380899]
  72. mBio. 2020 Feb 4;11(1): [PMID: 32019794]
  73. Eukaryot Cell. 2015 Dec;14(12):1173-85 [PMID: 26453651]
  74. Front Cell Infect Microbiol. 2022 Oct 13;12:1041036 [PMID: 36310879]
  75. Nat Commun. 2018 Feb 21;9(1):751 [PMID: 29467448]
  76. J Neuroimmunol. 2000 Sep 22;109(2):75-86 [PMID: 10996209]
  77. mBio. 2021 Mar 9;12(2): [PMID: 33688010]

Word Cloud

Created with Highcharts 10.0.0systemCryptococcusimmunelungsOFmycosisinfectionsporeshostmacrophagesevasiondisseminateorgansespeciallyDiseaseCRYPTOCOCCUSGlobalstillproblemOnecryptococcaldiseasesystemicbroughtcalledcryptococcosisHostimmunologicalconditionsinfluenceCryptococcosisenvironmentalinhaledgetcreatedAlveolarcellsrecognizelunginitiallinedefensepathogensphagolysosomeprovidedalveolarfoundweakusesmolecularinteractionpersistswithoutcausingsymptomsFactorTranscriptionCellmaskingN-glycanstructureExtracellularmoleculeAntioxidantmechanismprotectsmakesthroughoutCNSescapeswillCerebrospinalSystemThreemechanismsTrojanHorseParacellularTranscellularinteractionsBlood-BrainBarrierseveritydeterminedInteractionhost'sfungusBIOMOLECULARACTIVITYDURINGCRYPTOCOCCOSIS:REVIEWMOLECULARINTERACTIONSWITHHUMANIMMUNESYSTEMANDBLOOD-BRAIN-BARRIERBiomolecularActivityBlood-Brain-BarrierFungalImmuneResponse

Similar Articles

Cited By